Results 1 to 2 of 2

Thread: Confidence Interval

  1. #1
    Senior Member
    Joined
    Jan 2008
    From
    Montreal
    Posts
    311
    Awards
    1

    Confidence Interval

    Suppose that $\displaystyle Y$ is normally distributed with mean 0 and unknown variance $\displaystyle \sigma ^2$. Then $\displaystyle \frac{Y^2}{\sigma^2}$ has a $\displaystyle \chi^2$ with 1 df. Use the pivotal quantity $\displaystyle \frac{Y^2}{\sigma^2}$ to find:

    a) 95% confidence interval for $\displaystyle \sigma^2$
    b) 95% upper confidence limit of $\displaystyle \sigma^2$

    Solution:
    I based my work on http://www.mathhelpforum.com/math-he...-interval.html which gave me

    $\displaystyle f(y) = \frac{y^{(1/2)-1}e^{-y/2}}{2^{1/2}\Gamma{(1/2)}}$

    then $\displaystyle P(Y<\alpha) = \int^{\alpha}_0 \frac{y^{(1/2)-1}e^{-y/2}}{2^{1/2}\Gamma{(1/2)}} \ dy = 0.025$

    $\displaystyle P(Y<\alpha) = \frac{1}{\sqrt{2\pi}} \int^{\alpha}_0 y^{(1/2)-1}e^{-y/2} \ dy = 0.025$

    if I make the substitution $\displaystyle y=2x$ and $\displaystyle \frac{dy}{dx} =2 \longrightarrow dy = 2dx$ then I get:

    $\displaystyle P(2X<\alpha) = \frac{1}{\sqrt{2\pi}} \int^{\alpha}_0 (2x)^{(1/2)-1}e^{-x} \ 2dx = 0.025$

    $\displaystyle P(2X<\alpha) = \frac{1}{\sqrt{\pi}} \int^{\alpha}_0 x^{(1/2)-1}e^{-x} \ dx = 0.025$

    now this looks a lot like a Gamma function, but my upper bound is $\displaystyle \alpha$ and not $\displaystyle \infty$, which is throwing me off.

    $\displaystyle P(Y>\beta) = \int^{\infty}_{\beta} \frac{y^{(1/2)-1}e^{-y/2}}{2^{1/2}\Gamma{(1/2)}} \ dy = 0.025$

    $\displaystyle P(Y>\beta) = \frac{1}{\sqrt{2\pi}} \int^{\infty}_{\beta} y^{(1/2)-1}e^{-y/2} \ dy = 0.025$

    same substitution as before

    $\displaystyle P(2X>\beta) = \frac{1}{\sqrt{2\pi}} \int^{\infty}_{\beta} (2x)^{(1/2)-1}e^{-x} \ 2dx = 0.025$

    $\displaystyle P(2X>\beta) = \frac{1}{\sqrt{\pi}} \int^{\infty}_{\beta} x^{(1/2)-1}e^{-x} \ dx = 0.025$

    again this is looking a lot like a Gamma function, but this this my lower bound is not 0 it's $\displaystyle \beta$

    the answer in the back of the book is $\displaystyle \left(\frac{Y^2}{5.02389},\ \frac{Y^2}{0.71072} \right)
    $

    b) $\displaystyle P(Y \geq \beta) = \int^{\infty}_{\beta} \frac{y^{(1/2)-1}e^{-y/2}}{2^{1/2}\Gamma{(1/2)}} \ dy = 0.95$

    $\displaystyle P(Y \geq \beta) = \frac{1}{\sqrt{2\pi}} \int^{\infty}_{\beta} y^{(1/2)-1}e^{-y/2} \ dy = 0.95$

    same substitution and same argument as before. I get:

    $\displaystyle P(2X \geq \beta) = \frac{1}{\sqrt{\pi}} \int^{\infty}_{\beta} x^{(1/2)-1}e^{-x} \ dx = 0.95$

    with the solution in the back of the book being $\displaystyle \frac{Y^2}{0.0039321}$
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Flow Master
    mr fantastic's Avatar
    Joined
    Dec 2007
    From
    Zeitgeist
    Posts
    16,948
    Thanks
    9
    Quote Originally Posted by lllll View Post
    Suppose that $\displaystyle Y$ is normally distributed with mean 0 and unknown variance $\displaystyle \sigma ^2$. Then $\displaystyle \frac{Y^2}{\sigma^2}$ has a $\displaystyle \chi^2$ with 1 df. Use the pivotal quantity $\displaystyle \frac{Y^2}{\sigma^2}$ to find:

    a) 95% confidence interval for $\displaystyle \sigma^2$
    b) 95% upper confidence limit of $\displaystyle \sigma^2$

    Solution:
    I based my work on http://www.mathhelpforum.com/math-he...-interval.html which gave me

    $\displaystyle f(y) = \frac{y^{(1/2)-1}e^{-y/2}}{2^{1/2}\Gamma{(1/2)}}$

    Mr F says: All corrections are given in red:

    then $\displaystyle P({\color{red}U}<\alpha) = \int^{\alpha}_0 \frac{y^{(1/2)-1}e^{-y/2}}{2^{1/2}\Gamma{(1/2)}} \ dy = 0.025$ Mr F says: No. The random variable here is not Y. It's $\displaystyle {\color{red}\frac{Y^2}{\sigma^2} = U}$, say.

    $\displaystyle P( {\color{red}U} <\alpha) = \frac{1}{\sqrt{2\pi}} \int^{\alpha}_0 y^{(1/2)-1}e^{-y/2} \ dy = 0.025$

    if I make the substitution $\displaystyle y=2x$ and $\displaystyle \frac{dy}{dx} =2 \longrightarrow dy = 2dx$ then I get:

    $\displaystyle P({\color{red}U}<\alpha) = \frac{1}{\sqrt{2\pi}} \int^{\alpha{\color{red}/2}}_0 (2x)^{(1/2)-1}e^{-x} \ 2dx = 0.025$ Mr F says: The substitution is a change of variable only in the integral, NOT a change of random variable! That 2X you had should still be a U. Also, if you introduce a change of variable, you have to change the integral terminals too!

    Actually, my next comment (below) shows why there's actually no point in making a substitution.

    $\displaystyle P({\color{red}U}<\alpha) = \frac{1}{\sqrt{\pi}} \int^{\alpha{\color{red}/2}}_0 x^{(1/2)-1}e^{-x} \ dx = 0.025$

    now this looks a lot like a Gamma function, but my upper bound is $\displaystyle \alpha$ and not $\displaystyle \infty$, which is throwing me off.

    Mr F says: This equation can only be readily solved for $\displaystyle {\color{red}\alpha}$ by using technology. In fact, I'm not sure it can be solved at all without using technology.

    Everything I've said above applies below too.

    $\displaystyle P(Y>\beta) = \int^{\infty}_{\beta} \frac{y^{(1/2)-1}e^{-y/2}}{2^{1/2}\Gamma{(1/2)}} \ dy = 0.025$

    $\displaystyle P(Y>\beta) = \frac{1}{\sqrt{2\pi}} \int^{\infty}_{\beta} y^{(1/2)-1}e^{-y/2} \ dy = 0.025$

    same substitution as before

    $\displaystyle P(2X>\beta) = \frac{1}{\sqrt{2\pi}} \int^{\infty}_{\beta} (2x)^{(1/2)-1}e^{-x} \ 2dx = 0.025$

    $\displaystyle P(2X>\beta) = \frac{1}{\sqrt{\pi}} \int^{\infty}_{\beta} x^{(1/2)-1}e^{-x} \ dx = 0.025$

    again this is looking a lot like a Gamma function, but this this my lower bound is not 0 it's $\displaystyle \beta$

    the answer in the back of the book is $\displaystyle \left(\frac{Y^2}{5.02389},\ \frac{Y^2}{0.71072} \right)
    $

    b) $\displaystyle P(Y \geq \beta) = \int^{\infty}_{\beta} \frac{y^{(1/2)-1}e^{-y/2}}{2^{1/2}\Gamma{(1/2)}} \ dy = 0.95$

    $\displaystyle P(Y \geq \beta) = \frac{1}{\sqrt{2\pi}} \int^{\infty}_{\beta} y^{(1/2)-1}e^{-y/2} \ dy = 0.95$

    same substitution and same argument as before. I get:

    $\displaystyle P(2X \geq \beta) = \frac{1}{\sqrt{\pi}} \int^{\infty}_{\beta} x^{(1/2)-1}e^{-x} \ dx = 0.95$

    with the solution in the back of the book being $\displaystyle \frac{Y^2}{0.0039321}$
    ..
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Confidence Interval
    Posted in the Statistics Forum
    Replies: 5
    Last Post: Feb 9th 2011, 10:51 PM
  2. confidence interval
    Posted in the Advanced Statistics Forum
    Replies: 1
    Last Post: Jan 31st 2011, 12:02 PM
  3. Confidence Interval
    Posted in the Advanced Statistics Forum
    Replies: 3
    Last Post: Nov 28th 2009, 02:50 PM
  4. confidence level and confidence interval?
    Posted in the Advanced Statistics Forum
    Replies: 2
    Last Post: Jul 12th 2009, 06:59 AM
  5. Confidence Interval
    Posted in the Advanced Statistics Forum
    Replies: 1
    Last Post: Apr 22nd 2008, 06:55 PM

Search Tags


/mathhelpforum @mathhelpforum