Dear all

I encounter with the tough statistic methodology as PRCA(Penalty Reward contrast Analysis) during my thesis research in identifying Kano model attribute as whether these attributes are Basic Performance or excitement factors.In the first place I intend to use multiple regression to find the derived importance(refered as regression coefficient) of each attribute regressing on the single dependent variable as shown below

CS = A1*x1 + A2*X2 + .... +An*Xn

An : Derived importance or regression coefficient

Xn : attribute performance level

CS : Customer satisfaction

But the research of N.Kano clarify the asymmetry relationship between CS and attribute so the linear multiple regression is unappropriate to verify the relationship.So the effort to identify the Kano factor come in.I have tried to use PRCA as suggested by Brandt 1985 to identify Kano factor by using dichotomous dummy variable on the regression.The data will be coded as binary bit (0,1 for high level / 1,0 for low level attribute performance)for each attribute and done the regression for all coding attribute as follows

CS = CSaverage + A11*D11+A12*D12+A21*D21+A22*D22+A31*D31+A32*D32+.. .....An1*Dn1+An2*Dn2

Aij = dummies variable coefficient :i = number of attribute:J = Number of level (1 = high,2 = Low)

Dij = dummy variable :i = number of attribute:J = Number of level (1 = high,2 = Low)

and then compare the high level dummy coeficient with low level dummy coeficient to classify Kano factor.if high > low then exciter,High = low then performance and finally high < Low then basic.

****THEN THE PROBLEM IS****

I have many attributes to verify cause high multi-collinearity between attribute so the use of regression is distorted.So the partial correlation come in.The question is whether the partial correlation make sense in clasifying Low level Performance from High level performance in PRCA method as regression?