# More Stats help!

• Dec 1st 2007, 11:33 PM
Jar23
More Stats help!
A contractor has found through experience that the low bid for a job (exclude his own bid) is a random variable that is uniformly distributed over the interval (0.75C, 2C) where C is the contractor's cost estimate (no profit or loss) of the job. If profit is defined as 0 if the contractor does not get the job (his bid id greater that the low bid) and as the difference between his bid cost estimate C, if he gets the job; what should he bid (in terms of C) to maximize his expected profit?

Does anyone even understand where I would begin here or what time of way I would go about solving this???? THankssss again.
• Dec 2nd 2007, 03:40 AM
CaptainBlack
Quote:

Originally Posted by Jar23
A contractor has found through experience that the low bid for a job (exclude his own bid) is a random variable that is uniformly distributed over the interval (0.75C, 2C) where C is the contractor's cost estimate (no profit or loss) of the job. If profit is defined as 0 if the contractor does not get the job (his bid id greater that the low bid) and as the difference between his bid cost estimate C, if he gets the job; what should he bid (in terms of C) to maximize his expected profit?

Does anyone even understand where I would begin here or what time of way I would go about solving this???? THankssss again.

If the contractor bits $b$, then his probability of winning is:

$
p(b) = \frac{2-b/c}{1.25} \ b \in [0.75c, 2c],\ 0 \mbox{ otherwise}
$

Then his expected profit if he bids $b$ is:

$
\bar{pr}(b)=(b-c)p(b)
$

Now you need to find the $b$ that maximises $\bar{pr}(b)$

RonL
• Dec 2nd 2007, 10:17 AM
Jar23
Where did you get the p(b)= 2-b/c / 1.25??? Also where did you get the pr(b)??? Thanks so much!
• Dec 2nd 2007, 01:48 PM
CaptainBlack
Quote:

Originally Posted by Jar23
Where did you get the p(b)= 2-b/c / 1.25??? Also where did you get the pr(b)??? Thanks so much!

You have a uniform distribution over an interval $1.25c$ long $(2-(b/c))/1.25$ is the
proportion of lowest bids that are greater than $b$. $(b/c)$ is $b$ converted into units of $c$.

$pr(b)$ is the profit if you bid $b$ and so is $b-c$, and $\bar{pr}(b)$ is the expected
profit if you bid $b$.

RonL
• Dec 3rd 2007, 02:54 PM
M4NU3L
still not sure
Still not sure what this about. Can you do this complete?