Originally Posted by
downunder hi guys,
i have this problem that i have been brewing over for several hours.
Fred's game allows gamblers to select 5 numbers from the numbers 1 to 34. If all 5 chosen numbers are subsequently selected by Fred's random number selector machine, the gambler wins a prize. What is the minimum number of games that the gambler must play so that the probability of winning is greater than 9%?
judging by the marks that it would be allocated (only 2) i assume it must be fairly simple and im simply missing the simplicity... that or it is much harder. i suspected that it may be a binomial probability question but still got no where.
how can i go about solving this problem?