Results 1 to 2 of 2

Math Help - Computing mean and variance of geometric random variable?

  1. #1
    Newbie
    Joined
    Feb 2013
    From
    sf
    Posts
    1

    Computing mean and variance of geometric random variable?

    hello!

    So I am given the probability mass function of a geometric random variable, denoted by p(k)=p(1-p)^k, where p is the success, and 1-p is the failure. I am suppose to compute the mean and variance using the MOMENT GENERATING FUNCTION. I need help to study for my semester midterm! Thanks
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Joined
    Sep 2012
    From
    Australia
    Posts
    4,037
    Thanks
    745

    Re: Computing mean and variance of geometric random variable?

    Hey weeman8.

    Hint: Recall that E[X] = d/dt MGF_X(t) | t = 0 and E[X^2] = d^2/dt^2 MGF_X(t) | t = 0 where Var[X] = E[X^2] - E[X]^2
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: October 15th 2012, 11:37 PM
  2. normal random variable with zero variance
    Posted in the Advanced Statistics Forum
    Replies: 0
    Last Post: April 16th 2012, 04:49 AM
  3. Mean and variance of random variable distribution function F(z)
    Posted in the Advanced Statistics Forum
    Replies: 3
    Last Post: October 23rd 2009, 03:15 AM
  4. random variable, mean, variance
    Posted in the Advanced Statistics Forum
    Replies: 0
    Last Post: April 25th 2009, 02:30 AM
  5. Mean/variance of random variable...hmmmm
    Posted in the Advanced Statistics Forum
    Replies: 1
    Last Post: April 11th 2008, 05:47 PM

Search Tags


/mathhelpforum @mathhelpforum