Hi, I can't see how the indexing is working in this derivation. The question is: Show that the cdf for a geometric random variable is given by , where denotes the greatest integer in .
The derivation is given as
But
From which the result follows.
However, the sum of a the first n terms in a geometric series is:
So if we are saying that and
Then I can't see how this makes sense since it seems we are summing over terms, from to
Or in other words, if , why isn't the closed form of the sum over as follows: ?
Thanks in advance for any insights. MD