Let Yı, Y2, ... , Yn denote a random sample from the probability density function

f(y; http://www.mathhelpforum.com/math-he...5dc8912759.png) = (http://www.mathhelpforum.com/math-he...5dc8912759.png+1)y^http://www.mathhelpforum.com/math-he...5dc8912759.png , 0 < y < 1 , -1 < http://www.mathhelpforum.com/math-he...5dc8912759.png

and 0 elsewhere

find the MLE for http://www.mathhelpforum.com/math-he...5dc8912759.png

Ok, I'm new to this but I managed to do something, just not sure if it is right :)

L(http://www.mathhelpforum.com/math-he...5dc8912759.png) = product of (http://www.mathhelpforum.com/math-he...5dc8912759.png+1)y^http://www.mathhelpforum.com/math-he...5dc8912759.png n times (from 1 to n)

ln (L(http://www.mathhelpforum.com/math-he...5dc8912759.png)) = n*ln(http://www.mathhelpforum.com/math-he...5dc8912759.png+1) + http://www.mathhelpforum.com/math-he...5dc8912759.png*sum of ln(y) (from 1 to n)

I differentiate and put that equal to zero and get:

http://www.mathhelpforum.com/math-he...5dc8912759.png = -n/(ln(y^n))

Do you think this is the correct answer?