you need to review calculus three
To get started you need to draw the regions and that will explain the bounds
AND by the way I LOVE probability.
And this seems to be a problem from Walpole, I'm the first reviewer of Walpole in the introduction.
The problem in question:
f(x,y)=24xy for 0<= x<=1, 0<=y<=1, 0<=x+y<=1, otherwise x=0
The goal is to show that f(x,y) is a joint probability fxn and I believe we do that by doubly integrating f(x,y) and showing the result equals 1.
I believe that the answer is: , however I'm having trouble understanding the limits of integration. Why is it that we integrate from 0 to 1-y on x and from 0 to 1 on y?
Here's a similar problem I had earlier:
f(x,y)=2 0<x<y, 0<y<1
The problem asks the student to determine whether X,Y are independent. So, I set out to find the marginal distribution of x:
Why do we integrated from x to 1
Why do we integrate from 0 to y
Could we switch the limits of integration as long as we adjust them for both X and Y? For example, could we integrate from 0 to 1 instead of x to 1 if we change the limits of integration on Y?
Thanks a bunch in advance...I hate probability