Results 1 to 2 of 2

Math Help - Show Y has normal distribution

  1. #1
    Member
    Joined
    Sep 2008
    Posts
    79

    Show Y has normal distribution

    If X~Normal(u,v^2), show that Y = aX + b is Normal(au+b, (a^2)(v^2)) by using moment generating functions to complete the proof. In order to show that Y is normal with mean au + b and variance (a^2)(v^2), it suffices to show that the m.g.f. of Y is the same as the m.g.f. of a normal with that mean and variance. So find some way to derive the m.g.f. of Y using the information that you are given.


    I'm really not sure where to start with this. I know the mgf of X should be M(t) = exp(ut + (v^2)(t^2)/2) and the mgf of Normal(au+b, (a^2)(v^2)) should be exp((au+b)t + (a^2)(v^2)(t^2)/2). Should I substitute ax+b in for x in the pdf of X and then find the mgf, or is there a simpler way?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Flow Master
    mr fantastic's Avatar
    Joined
    Dec 2007
    From
    Zeitgeist
    Posts
    16,948
    Thanks
    5
    Quote Originally Posted by uberbandgeek6 View Post
    If X~Normal(u,v^2), show that Y = aX + b is Normal(au+b, (a^2)(v^2)) by using moment generating functions to complete the proof. In order to show that Y is normal with mean au + b and variance (a^2)(v^2), it suffices to show that the m.g.f. of Y is the same as the m.g.f. of a normal with that mean and variance. So find some way to derive the m.g.f. of Y using the information that you are given.


    I'm really not sure where to start with this. I know the mgf of X should be M(t) = exp(ut + (v^2)(t^2)/2) and the mgf of Normal(au+b, (a^2)(v^2)) should be exp((au+b)t + (a^2)(v^2)(t^2)/2). Should I substitute ax+b in for x in the pdf of X and then find the mgf, or is there a simpler way?
    There is a theorem regarding the mgf of aX + b when you know the mgf of X. Look it up and use it.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: December 27th 2011, 02:08 PM
  2. normal distribution prior and posterior distribution proof
    Posted in the Advanced Statistics Forum
    Replies: 0
    Last Post: March 9th 2011, 07:12 PM
  3. Replies: 2
    Last Post: March 29th 2010, 03:05 PM
  4. Replies: 2
    Last Post: August 25th 2009, 11:39 PM
  5. Replies: 1
    Last Post: April 20th 2008, 07:35 PM

Search Tags


/mathhelpforum @mathhelpforum