Results 1 to 11 of 11

Math Help - Probability, permuations & combinations help

  1. #1
    Newbie
    Joined
    Jun 2007
    Posts
    5

    Probability, permuations & combinations help

    I don't have the exact answers for these questions, I only know whether the answers would be right or wrong, my answers below are wrong though

    1.

    solved

    2.

    [solved]


    solved

    5.
    [solved]

    6.[solved]!!
    -------------------------

    well I don't know which categorary Permuations and combinations fall under, sorry if I posted in the wrong forum. Any help would be greatly appreciated
    Last edited by kakab00; June 13th 2007 at 11:42 PM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Senior Member
    Joined
    Apr 2006
    Posts
    399
    Awards
    1
    Quote Originally Posted by kakab00 View Post
    I don't have the exact answers for these questions, I only know whether the answers would be right or wrong, my answers below are wrong though

    1.

    I thought it would be 95/100 X 0.4%(in case the test was accurate) + 5/100X99.6%(in case the test was inaccurate) but it appears to be wrong..
    The conditional probability P(Has\ cancer|Test\ says\ so) is needed here.

    From the definition of conditional probability

    P(Has\ cancer|Test\ says\ so) = \frac{P(Has\ cancer\ AND\ Test\ says\ so)}{P(Test\ says\ so)}.

    You have calculated the denominator. The numerator is just the case "the test was accurate."
    Last edited by JakeD; June 12th 2007 at 11:39 PM. Reason: Denominator was "Has cancer," which was incorrect.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Jun 2007
    Posts
    5
    Quote Originally Posted by JakeD View Post
    The conditional probability P(Has\ cancer|Test\ says\ so) is needed here.

    From the definition of conditional probability

    P(Has\ cancer|Test\ says\ so) = \frac{P(Has\ cancer\ AND\ Test\ says\ so)}{P(Has\ cancer)}.

    You have calculated the denominator. The numerator is just the case "the test was accurate."
    ?? I don't quite get what you mean here, if I had calculated the denominator from my workings then wouldn't the probability be >1 if the numerator is just "the test was accurate"(0.95 in this case)
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Senior Member
    Joined
    Apr 2006
    Posts
    399
    Awards
    1
    Quote Originally Posted by JakeD View Post
    The conditional probability P(Has\ cancer|Test\ says\ so) is needed here.

    From the definition of conditional probability

    P(Has\ cancer|Test\ says\ so) = \frac{P(Has\ cancer\ AND\ Test\ says\ so)}{P(Test\ says\ so)}.

    You have calculated the denominator. The numerator is just the case "the test was accurate."
    Quote Originally Posted by kakab00 View Post
    ?? I don't quite get what you mean here, if I had calculated the denominator from my workings then wouldn't the probability be >1 if the numerator is just "the test was accurate"(0.95 in this case)
    OK, ignore my description of what you did. Calculate P(Has\ cancer\ AND\ Test\ says\ so), which is part of your calculation of the denominator.
    Last edited by JakeD; June 12th 2007 at 11:41 PM. Reason: Denominator said "Has cancer", which is incorrect.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Newbie
    Joined
    Jun 2007
    Posts
    5
    Quote Originally Posted by JakeD View Post
    OK, ignore my description of what you did. Calculate P(Has\ cancer\ AND\ Test\ says\ so), which you've already done.
    ok.. I got it, so it's 0.95x0.004 = 0.0038

    and use this value divided by the value I found in my first post right?
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Senior Member
    Joined
    Apr 2006
    Posts
    399
    Awards
    1
    Quote Originally Posted by JakeD View Post
    OK, ignore my description of what you did. Calculate P(Has\ cancer\ AND\ Test\ says\ so), which is part of your calculation of the denominator.
    Quote Originally Posted by kakab00 View Post
    ok.. I got it, so it's 0.95x0.004 = 0.0038

    and use this value divided by the value I found in my first post right?
    Right. Notice I edited my posts. I said the denominator was P(Has cancer). It is actually P(Test says so) and this is what you calculated.
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Newbie
    Joined
    Jun 2007
    Posts
    5
    new question addedd, it's on probability too:

    Follow Math Help Forum on Facebook and Google+

  8. #8
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,809
    Thanks
    701
    Hello, kakab00!

    4. There are eight seats at a round table, equally spaced.
    Find the number of ways in which two women, one married couple,
    and one family of four people can be seated at the table

    (a) if their are no restriction to which seats they must take.
    There are: . (8-1)! \:=\:7!\:=\:5040 ways.


    (b) if the married couple must be seated together
    and the family of four must be seated together.
    Duct-tape the married couple together: . \{\text{Husband,Wife}\}
    Duct-tape the family-of-four together: . \{F_1,F_2,F_3,F_4\}

    Then there are four "people" to arrange: . \boxed{\text{Husband-Wife}},\;\boxed{F_1\text{-}F_2\text{-}F_3\text{-}F_4},\;\boxed{\text{woman}},\;\boxed{\text{woman}  }
    . . and they can be seated in: . (4-1)! \:=\:3! \:=\:6 ways.

    But for each of these seatings,
    . . the married couple can be rearranged in 2!=2 ways
    . . and the family-of-four can be rearranged in 4!= 24 ways.

    Therefore, there are: .  6 \times 2 \times 24 \:=\:288 possible seatings.



    (c) if the married couple must sit together
    and the two women must not be seated directly opposite each other.
    This is much trickier; I had to baby-talk my way through it.

    Seat the married couple.. .Call their seats #1 and #2.
    The diagram looks like this:
    Code:
                 Husband
                   [1]   Wife
             [8]    |   [2]
                \   |   /
                  \ | /
           [7]- - - * - - - [3]
                  / | \
                /   |   \
             [6]    |     [4]
                   [5]

    Now we will seat the two women: \{W_1,W_2\}


    Select one of the women; there are 2 choices.

    Suppose she sits in chair #5 or #6; 2 choices.
    Since the other woman can not be seated opposite.
    . . then the remaining five people can be seated in 5! = 120 ways.

    Hence, there are: . 2 \times 2 \times 120 \:= 480 seatings.


    Select one of the women; there are 2 choices.

    Suppose she sits in chair #3, 4, 7,or 8 . . . 4 choices.
    . . Then the other woman must not sit in the opposite chair; she has 4 choices.
    Then the family-of-four can be seated in 4! = 24 ways.

    Hence, there are: . 2 \times 4 \times 4 \times 24 \:= 768 seatings.


    So there are: . 480 + 768 \:= 1248 seatings.


    But originally, we placed Husband in chair #1 and Wife in chair #2.
    . . Of course, they could be reversed.
    This doubles the number of seatings.


    Therefore, the number of seatings is: .  2 \times 1248 \:= 2496

    Follow Math Help Forum on Facebook and Google+

  9. #9
    Newbie
    Joined
    Jun 2007
    Posts
    5
    Therefore, the number of seatings is: . 2496


    The answer I was given was just 1248, maybe it's because it's a round table?
    Follow Math Help Forum on Facebook and Google+

  10. #10
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,809
    Thanks
    701
    Hello, kakab00!

    The events A and B are independent.
    If it given that: . P(A) = 0.25,\;P(A' \cap B')= 0.15

    (a) What is the value of P(B) ?
    By DeMorgan's Law: . A'\cap B' \:=\:(A \cup B)'
    So we have: . P(A' \cap B') \:=\:P(A \cup B)' \:=\:0.15
    . . Hence: . P(A \cup B) \:=\:0.85

    Events A and B are independent.
    .. Hence: . P(A \cap B) \:=\:P(A)\!\cdot\!P(B) \:=\:(0.25)P(B)

    Formula: . P(A \cup B) \:=\:P(A) + P(B) -P(A \cap B)

    So we have: . . 0.85 \:=\:0.25 + P(B) - (0.25)P(B)

    Then: . 0.60 \:=\:(0.75)P(B)\quad\Rightarrow\quad P(B) \:=\:\frac{0.60}{0.75}

    Therefore: . P(B) \:=\:0.8



    (b) What is the value of P(A' \cup B') ?
    We know that: . P(A \cap B) \:=\:P(A)\!\cdot\!P(B)\:=\:(0.25)(0.8) \:=\:0.20
    . . Hence: . P(A \cap B)' \:=\:0.8

    By DeMorgan's Law: . A'\cup B' \:=\:(A \cap B)'

    Therefore: . P(A' \cup B') \:=\:P(A \cap B)' \:=\:0.80



    (c) It is given that events B and C are mutually exclusive,
    . . . P(A \cup C) = P(A) and P(A \cap C) = P(C)
    What is the largest possible chance that event C will occur?
    Since P(A \cup C) = P(A) and P(A \cap C) = P(C), then: . C \subset A
    . . (Circle C is completely contained in circle A.)

    Since B and C are mutually exclusive, their circles do not intersect.

    The Venn diagram looks like this:
    Code:
      * - - - - - - - - - - - - - - - - - - - - - - - - - *
      |                                                   |
      |           *---------*       *---------*           |
      |         /      A      \   /      B      \         |
      |       /                                  \       |
      |     /     0.05        /   \        0.60     \     |
      |   *                 *       *                 *   |
      |   |                 |       |                 |   |
      |   |       *---*     |       |                 |   |
      |   |      /     \    |  0.20 |                 |   |
      |   |     *       *   |       |                 |   |
      |   |     |   C   |   |       |                 |   |
      |   *     *       *   *       *                 *   |
      |     \    \     /      \   /                 /     |
      |       \   *---*                          /       |
      |         \             /   \             /         |
      |           *---------*       *---------*           |
      |                                             0.15  |
      * - - - - - - - - - - - - - - - - - - - - - - - - - *

    Since circle C could be equal to circle A:\;\;P(C) \:\leq\:0.05

    Follow Math Help Forum on Facebook and Google+

  11. #11
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,809
    Thanks
    701
    Hello, kakab00!

    Don't delete your questions.
    Others may benefit from the exchange we've had here.

    I finally took the time to work out #3.

    Code:
          *
          *   *
          o       o    C
          *           o
        A *               o
          o                   o
          *                       *
          * * * * o * o * o * * * * * *
                      B
    (i) How many line segments are there joining any two points on different sides?
    On side A, there are 2 choices of points.
    Each can be joined to any of the other 7 points.
    . . There are: . 2 \times 7 \,=\,14 line segments.

    On side B, there are 3 choices of points.
    Each can be joined to any of the 4 points on side C.
    . . There are: . 3 \times 4 \,=\,12 line segments.

    Therefore, there are: .  14 +12 \:=\:\boxed{26} possible line segments.

    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

    Check

    There are 9 points and there are: {9\choose2} \,=\,36 pairs of points.
    But some of these join two points on the same side of the triangle.

    There is 1 such pair on side A.
    There are {3\choose2} = 3 such pairs on side B.
    There are {4\choose2} = 6 such pairs on side C.
    . . Hence, there are: 1 + 3 + 6\:=\:10 disallowed segments.

    Therefore, there are: 36 - 10 \:=\:\boxed{26} allowed line segments.



    (ii) How many triangles can be formed from these points?

    There are 9 points; we will select 3 of them.
    . . There are: . {9\choose3} \,=\,84 sets of 3 points.
    But some are sets of 3 collinear points, which do not form a triangle.
    . . How many sets of three collinear points are there?

    There is one set on side B.
    There are: {4\choose3} = 4 sets on side C.
    . . Hence, there are: 1 + 4 \,=\,5 sets of collinear points.

    Therefore, there are: . 84 - 6 \:=\:\boxed{79} triangles.

    ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

    Check

    On side A, there is 1 pair of points.
    It can be joined with any of the other 7 points.
    . . Hence, there are: 1 \times 7 \:=\:7 triangles.

    On side B, there are: {3\choose2} = 3 pairs of points.
    They can be joined with any of the other 6 points.
    . . Hence, there are: 3 \times 6 \:=\:18 triangles.

    On side C, there are: {4\choose2} = 6 pairs of points.
    They can be joined with any of the other 5 points.
    . . Hence, there are: 6 \times 5 \:=\:30 triangles.

    We can also pick one point from each side.
    There are 2 choices for side A, 3 for side B, 4 for side C.
    . . Hence, there are: 2 \times 3 \times 4 \:=\:24 triangles.

    Therefore, there are: 7 + 18 + 30 +24 \:=\:\boxed{79} triangles.

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. permuations
    Posted in the Discrete Math Forum
    Replies: 9
    Last Post: April 21st 2010, 04:19 AM
  2. Combinations and a bit of probability
    Posted in the Discrete Math Forum
    Replies: 2
    Last Post: December 5th 2009, 12:11 PM
  3. Probability with combinations
    Posted in the Statistics Forum
    Replies: 6
    Last Post: December 5th 2009, 06:38 AM
  4. Problem - distinguishable permuations
    Posted in the Discrete Math Forum
    Replies: 4
    Last Post: August 15th 2009, 01:25 PM
  5. Combinations and Probability
    Posted in the Statistics Forum
    Replies: 4
    Last Post: February 18th 2008, 11:01 AM

Search Tags


/mathhelpforum @mathhelpforum