If X is a real valued random variable with mean
and variance , then your chebyshef's inequality is given by:
use this to find what your question is asking
Hi,
A product is sold by box of 5000 products. The mean and variance for the number of defective products in one box is respectivly 10 and 5.76. Use chebyshev inequality to find a boundary for the probability that a box contains 8 to 12 defective products.
What i did:
P(8 <= X <= 12) = P(|X - 10| <= 2) = 1 - P(|X -10| > 2), and with chebyshev inequality i find P(|X - 10| > 2) <= 5.76/2^2 = 1.44?? What is my mistake? Thank you so much