Results 1 to 6 of 6

Math Help - calculating expected value

  1. #1
    Newbie
    Joined
    Sep 2010
    Posts
    6

    calculating expected value

    Hi again, back with another question! Here goes:

    148 students ride in 4 buses, which transport 25, 33, 40 and 50 students respectively. A student is chosen at random. Let X be the number of student on the bus she's riding. Also, one of the 4 busdrivers are chosen at random. Let Y be the number of students on his bus.

    Calculate expected values E[X] and E[Y].

    (I've calculated expected value before but this question seems different and I'm really at a loss as to where to start.) Would really love some help with this!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Newbie
    Joined
    Oct 2009
    Posts
    7
    Remember: E(X)=\sum\limits_{all x}xf(x), where f(x) is the probability function.

    Now, here your X takes on the values 25, 33, 40, and 50, with probabilities 25/148, &c.

    Your Y takes on the same values, with probabilities all being 1/4.

    After that it should be a straightforward calculation.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Newbie
    Joined
    Sep 2010
    Posts
    6
    Hi, thanks a million for helping me!

    Yes, been working some more on this with a friend and we decided E(X)= (40^2)/148 + (33^2)/148 + (25^2) + (50^2)/148 = 39,28

    The number seems reasonable. However, I personally don't understand why we square the numbers, could you explain this for me? (Is it even correct to do so?)

    For the busdriver we simply calculated E(Y)= 40/4 + 33/4 + 25/4 + 50/4 = 37
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Newbie
    Joined
    Oct 2009
    Posts
    7
    Well, the fact that you square the numbers is coincidental, it's just because of the way the question is set up. There's no special significance to it. Try working through it one step at a time:

    E(X)=\sum\limits_{all x}xf_X(x)=\sum\limits_{x \epsilon \{25,33,40,50\}}xf_X(x)

    =25*f_X(25)+33*f_X(33)+40*f_X(40)+50*f_X(50)

    Now, f_X(25)=P(X=25) is the probability that a randomly chosen student is on the bus with 25 passengers, which is clearly \frac{25}{148}, and so on. Thus

    =25*\frac{25}{148}+33*\frac{33}{148}+40*\frac{40}{  148}+50*\frac{50}{148}

    =\frac{25^2+33^2+40^2+50^2}{148}=\frac{5814}{148}=  39.28...
    Last edited by coatesdr; September 30th 2010 at 12:23 PM.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Newbie
    Joined
    Oct 2009
    Posts
    7
    Just for comparison, it's exactly the same process for finding E(Y):

    E(Y)=\sum\limits_{all y}yf_Y(y)=\sum\limits_{y\epsilon\{25,33,40,50\}}yf  _Y(y)

    =25*f_Y(25)+33*f_Y(33)+40*f_Y(40)+50*f_Y(50)

    But here, f_Y(25)=P(Y=25) is the probability that a randomly chosen bus driver is on the bus with 25 passengers, which is \frac{1}{4}, and is the same for all the buses. Thus

    =25*\frac{1}{4}+33*\frac{1}{4}+40*\frac{1}{4}+50*\  frac{1}{4}=37
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Newbie
    Joined
    Sep 2010
    Posts
    6
    coatsder, thank you so much for this!! Finally I understand what it is I am doing Will try to find some similar problems to work on now so as to really "hammer it into my head"

    Again, you've been a great help! TY!
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Calculating the expected value for my formula (LaPlace)
    Posted in the Advanced Statistics Forum
    Replies: 0
    Last Post: May 15th 2011, 01:16 PM
  2. Calculating the Expected Cost. Help!
    Posted in the Statistics Forum
    Replies: 5
    Last Post: February 13th 2011, 09:53 AM
  3. Replies: 1
    Last Post: October 5th 2009, 01:45 PM
  4. Calculating expected value from infinite series?
    Posted in the Advanced Statistics Forum
    Replies: 0
    Last Post: September 29th 2009, 06:32 PM
  5. problem with calculating expected value
    Posted in the Statistics Forum
    Replies: 4
    Last Post: February 16th 2009, 10:52 AM

Search Tags


/mathhelpforum @mathhelpforum