A Markov chain on state space {1,2,3,4,5,6} has transition matrix

 <br />
\begin{pmatrix} <br />
0 & 0.5 & 0.25 & 0.25 & 0 & 0\\ <br />
0.25 & 0 & 0 & 0.25 & 0.50 & 0\\ <br />
0 & 0 & 1 & 0 & 0 & 0\\<br />
0 & 0 & 0 & 0 & 1 & 0\\<br />
0 & 0 & 0 & 0.40 & 0.40 & 0.20\\<br />
0 & 0 & 0 & 0 & 0 & 1\\<br />
\end{pmatrix} <br />

Calculate P(X_3\neq5|X_1=5 I am not sure how to do this and I think something similiar is likely to appear on the final exam tomorrow so please help me out..
Are the following correct?
P(X_2=5|X_1=2)=p_{25}=0.50
P(X_3=5|X_1=2)=p_{25}p_{55}+p_{24}p_{45}=0.45
P(X_3=2|X_1=5)=0