Results 1 to 1 of 1

Math Help - Simple Logistic Regression

  1. #1
    Newbie
    Joined
    Jan 2010
    Posts
    8

    Simple Logistic Regression

    Five different doses of insecticide were applied under standardized conditions to an insect species. The data are as followed:

    Dose (mg/l): 2.6 3.8 5.1 7.7 10.2
    Number of insects: 60 60 59 57 60
    Number killed: 7 16 20 48 54

    I was asked to build a logistic regression model which says the logit of the chance of death changes linearly with the natural logarithm of dose.

    I did this in SAS.

    I'm asked to give a 95% Likelihood Ratio Confidence Interval for B. Further, translate this interval into an interval for the effect on the odds of death of increasing the dose by 50% (i.e, multiplying the dose factor by 1.5) and interpret. Hint: First translate the multiplying dose factor to the natural log scale.

    I'm not sure how to do this, I've attached the appropriate SAS output I think I need to do the question with. I'm thinking take the B estimate (logc in the output is my B estimate) and exponentiate it, then times that value by 1.5. If thats right, what do i do next? same thing to the end points of the confidence interval associated with B?

    Please advise!
    Attached Thumbnails Attached Thumbnails Simple Logistic Regression-logistic.jpg  
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Maximum Likelihood and Logistic Regression
    Posted in the Advanced Statistics Forum
    Replies: 1
    Last Post: August 24th 2011, 04:33 AM
  2. Binomial logistic regression
    Posted in the Advanced Statistics Forum
    Replies: 1
    Last Post: August 5th 2010, 03:42 AM
  3. Logistic Regression 2
    Posted in the Advanced Statistics Forum
    Replies: 1
    Last Post: March 21st 2010, 02:09 PM
  4. Logistic Regression in Social Sciences
    Posted in the Advanced Statistics Forum
    Replies: 8
    Last Post: July 9th 2009, 05:35 AM
  5. Bayesian Logistic Regression
    Posted in the Advanced Statistics Forum
    Replies: 0
    Last Post: October 14th 2008, 06:28 AM

Search Tags


/mathhelpforum @mathhelpforum