Each worker's productivity Xi(where i=1,2,3,4....n) is distributed uniformly and independently on the interval (0,L), where L is an unknown upper limit, which we want to estimate

Notice: L(Tilda) is an estimator of L

a) The probability function density function in terms of L?

b) Find E(xi) in terms of L?

c) Find var(xi) in terms of L?

d) Estimated L using L(tilda)= 2X(bar), where X(bar) is based on X1, X2,...Xn

Find thebiasof L(tilda)?

e) Find the MSE of L(tilda)? is L(tilda) a consistent estimator of L?

f) On inspecting the actual values X1, X2, Xn, we discards the estimator L(tilda), muttering curses on classical estimation theory, and estimates L another way. Can you see why we have might done so? The reason is good, by the way it's not a bayesian; and not all samples of X1, X2, Xn would cause him to react this way

Have worked through some of the sub-questions, but far from sure about the correctness of the answers!

Best regards