A number from "000" to "999" is randomly generated. after generating 6,700 numbers there is ONLY ONE number that has not been generated (ie: 884). What is the probability of that number being the next one to be generated? how many more numbers do you expect to be generated before the "884" comes out?

Note: Now I am confused after reading about the 'gambler's fallacy'. BUT my logical reasoning says that because 6,700 numbers have been generated, theres a big chance that the only number that hasnt been generated (884) is comming out very very soon.

2. I beleive you are correct about the gambler's fallacy.

Since it is a random number generator each possibilty has the exact same chance of occuring on every individual generation, regardless of history.

The chances are the same as on the first generation, 1/1000

3. http://www.saliu.com/formula.html

Theres something called 'The Fundamental Formula Of Gambling' and 'Degree of certainity'.

for having a chance of 99.9% of getting one 'head' you have to flip the coin 10 times.

I did the calculations and to have a 99.9% of getting a 3 digit number you need to generate 6904 numbers.
Because in my problem 6,700 numbers have been generated I think the 884 number is going to be generated VEY SOON.

4. For this question:

What is the probability of that number being the next one to be generated?