Results 1 to 4 of 4

Math Help - Probability Sampling with replacement

  1. #1
    Newbie
    Joined
    Aug 2009
    Posts
    3

    Probability Sampling with replacement

    A box contains tickets marked 1,2,...n. A ticket is drawn at random from tehe box. Then this ticket is replaced in the box and a second ticket is drawn at random. Find the probabilities of the following events:
    The first ticket drawn is number 1 and the scond ticket is number 2.
    The numbers on the two tickets are consectuive integers, meaning the first number drawn is one less than the second number drawn.
    The second number drawn is bigger than the first number drawn.

    I understand the first part of it. The first ticket probability is 1/n and second ticket probability is 1/n so it's 1/n^2.
    The second one has the first part as 1/n and the second part as (n-1)/n so it's (n-1)/n^2.
    I don't understand the third scenario. The answer as shown is (1-1/n)/2?
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by kittykat52688 View Post
    A box contains tickets marked 1,2,...n. A ticket is drawn at random from tehe box. Then this ticket is replaced in the box and a second ticket is drawn at random. Find the probabilities of the following events:
    The first ticket drawn is number 1 and the scond ticket is number 2.
    The numbers on the two tickets are consectuive integers, meaning the first number drawn is one less than the second number drawn.
    The second number drawn is bigger than the first number drawn.

    I understand the first part of it. The first ticket probability is 1/n and second ticket probability is 1/n so it's 1/n^2.
    The second one has the first part as 1/n and the second part as (n-1)/n so it's (n-1)/n^2.
    I don't understand the third scenario. The answer as shown is (1-1/n)/2?
    You have the second part right but the explanation is wrong.

    The first ticket k must be one of 1, 2,\ ..\ n-1 (which occurs with prob (n-1)/n and the second must be k+1 (drawn from n tickets) which occurs (given that the first ticket is chosen correctly) with probability 1/n. Hence the required probability is (n-1)/n^2

    CB
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by kittykat52688 View Post
    A box contains tickets marked 1,2,...n. A ticket is drawn at random from tehe box. Then this ticket is replaced in the box and a second ticket is drawn at random. Find the probabilities of the following events:
    The first ticket drawn is number 1 and the scond ticket is number 2.
    The numbers on the two tickets are consectuive integers, meaning the first number drawn is one less than the second number drawn.
    The second number drawn is bigger than the first number drawn.

    I understand the first part of it. The first ticket probability is 1/n and second ticket probability is 1/n so it's 1/n^2.
    The second one has the first part as 1/n and the second part as (n-1)/n so it's (n-1)/n^2.
    I don't understand the third scenario. The answer as shown is (1-1/n)/2?
    For the third part we can consider three possibilities, the first is greater than the second, the second is greater than the first, and that they are equal.

    The first two are obviously equal (by symmetry), and the second is 1/n.

    These sum to one so let p denote the probability that the second is greater than the first, then we have:

    2p+1/n=1

    hence:

    p=(1-1/n)/2

    CB
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Newbie
    Joined
    Sep 2012
    From
    washington, DC
    Posts
    2

    Re: Probability Sampling with replacement

    Hi, I have a similar question.
    A random sample n = 3 is selected from N with replacement.
    I do not understand why the probability of having , two distinct
    units is P = 3*(N-1)/(N^2), and three distinct units is P = (N -1)(N -2)/N^2

    Thanks
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: November 10th 2011, 08:07 AM
  2. [SOLVED] Calculating probability when sampling without replacement.
    Posted in the Statistics Forum
    Replies: 5
    Last Post: August 22nd 2011, 02:57 PM
  3. Replies: 3
    Last Post: July 5th 2011, 08:13 PM
  4. Probability - sampling without replacement.
    Posted in the Statistics Forum
    Replies: 4
    Last Post: May 17th 2011, 12:46 PM
  5. Probability - sampling with & without replacement
    Posted in the Statistics Forum
    Replies: 1
    Last Post: October 13th 2008, 02:22 AM

Search Tags


/mathhelpforum @mathhelpforum