A predictor-corrector method for the approximate solution of $y'=f(t,y)$ uses
\begin{equation} y_{n+1}-y_{n}=hf_{n} \tag P
\end{equation}
as predictor and
\begin{equation} y_{n+1}-y_{n}=\frac{h}{2}(f_{n+1}-f_{n}) \tag C
\end{equation}
IF $(P)$ and $(C)$ are used in PECE mode on the vector problem
\begin{equation} \frac{du}{dt}=u
\end{equation}
\begin{equation} \frac{dv}{dt}=-10u-11v+cos(2\pi t)
\end{equation}
with $u(0)$,$v(0)$ given, find the largest constant $\gamma >0$ for which the scheme is stable in the sense of Von Neumann (Fourier series stability and frequency) whenever $0<\gamma<0$. Give full details of your argument.
=>
I haven't try very well because its really difficult question for me.
I was thinking
\begin{equation} y_{n+1}=y_{n}+hf_{n} \tag P
\end{equation}
as predictor and
\begin{equation} y_{n+1}=y_{n}+\frac{h}{2}(f_{n+1}-f_{n}) \tag C
\end{equation}
iam trying to get transition matrix but these condition
\begin{equation} \frac{du}{dt}=u
\end{equation}
\begin{equation} \frac{dv}{dt}=-10u-11v+cos(2\pi t)
\end{equation}
i don't know how and where to use.
please help me.