Hi there
I've got the following two exercises to solve:

Consider the measure space where B denotes the Borelsigmaalgebra and the Lebesguemeasure.
(1)
Let and continuous. Show that
is differentiable and that
(2)
If is almost everywhere continuous only is then
almost everywhere as well?
Why? Prove your answer!

(1)
According to the theorem of RadonNikodym for then
Obviously the derivative of this is g but how can one show this in a proper way?
????
I also tried it this way:
but what then is x and 0? Definitely not a onepoint set... cause then it was all zero.
(2)
I'd say that this is right because where
is a Lebesguezero set but how to show?
Could please someone help me to solve this exercise? Any hint would be appreciated.
Regards
Huberscher