Prove or disprove

$\displaystyle F_n(x) = \sin nx $ is equicontinuous

I know the definition of equicontinuous at $\displaystyle x_0$ it says for all $\displaystyle \epsilon >0 $ there exist $\displaystyle \delta>0 $ such that if $\displaystyle d ( f(x_0),f(x) ) < \epsilon $ then

$\displaystyle d(x_0 , x) < \delta $

trying if it is equicontinuous at $\displaystyle x_0 = 0 $

Given $\displaystyle \epsilon > 0 $

$\displaystyle | f(x) | < \epsilon \Rightarrow |\sin n x | < \epsilon $

delta depends on epsilon and x just how i can continue

any hints or any directions