Originally Posted by

**ain** Dear all,

Someone have an idea how to solve my equation below?

I want to get T1 T2 T3 and T4.

The main equation:

T1=u(1)*m1/(cos(theta)*cos(psi))

T2=u(2)*Ix + Iz*psidot*thetadot - Iy*thetadot*psidot

T3=[u(3)*Iy - Iz*psidot*phidot + (Jt*Omega + Ix*phidot)psidot]/L

T4=[u(4)*Iz + Iy*thetadot*phidot - (Jt*Omega + Ix*phidot)thetadot]/L

To get Omega value, the equation related to T

Omega = w2 + w4 - w3 - w1

T1 = b(w1^2 + w2^2 + w3^2 +w4^2)

T2 = d(-w2^2 - w4^2 + w1^2 +w3^2)

T3 = b(w1^2 - w3^2)

T4 = b(w2^2 - w4^2)

T = [T1 T2 T3 T4]'

I can solve Omega like below but to get Omega still need T. How should I combine these equation to get T

% solving of Omega

omega(1) = 0.0; omega(2) = 0.0; omega(3) = 0.0; omega(4) = 0.0; %initial rotation

% transformation matrix Q

Q = [ b b b b;

d -d d -d;

b 0 -b 0;

0 b 0 -b];

% T = Q * Omega2, where Omega2 = [omega1^2 omega2^2 omega3^2 omega4^2]'

Omega2 = inv(Q)*T

%

for i1 = 1:ni %ni=4

omega(i1) = sqrt(Omega2(i1));

end

% Omega = omega2 + omega4 - oemga1 - omega3

Omega = omega(2) + omega(4) - omega(1) - omega(3);