Results 1 to 4 of 4
Like Tree1Thanks
  • 1 Post By chisigma

Math Help - Is there a closed form solution to this infinite series?

  1. #1
    Newbie
    Joined
    Oct 2010
    Posts
    2

    Question Is there a closed form solution to this infinite series?

    Is there a closed form solution to this infinite series?

    x is a number between 0 and 1.
    n can take any value between 1 and infinity.

    1/n + x/(n+2) + x^2/(n+4) + x^3/(n+6) + ...................

    Thanks!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by Titian View Post
    Is there a closed form solution to this infinite series?

    x is a number between 0 and 1.
    n can take any value between 1 and infinity.

    1/n + x/(n+2) + x^2/(n+4) + x^3/(n+6) + ...................

    Thanks!
    Wolfram Alpha

    Lerch Transcendent -- from Wolfram MathWorld

    CB
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor chisigma's Avatar
    Joined
    Mar 2009
    From
    near Piacenza (Italy)
    Posts
    2,162
    Thanks
    5
    Quote Originally Posted by Titian View Post
    Is there a closed form solution to this infinite series?

    x is a number between 0 and 1.
    n can take any value between 1 and infinity.

    1/n + x/(n+2) + x^2/(n+4) + x^3/(n+6) + ...................

    Thanks!
    Let's suppose that n is a 'natural number' so that we have a family of functions defined as...

    \displaystyle \varphi_{n} (x) = \sum_{k=0}^{\infty} \frac{x^{k}}{n+2 k} (1)

    First we set \xi= \sqrt{x} and then we start with n=1

    \displaystyle \varphi_{1} (\xi)= 1 + \frac{\xi^{2}}{3} + \frac{\xi^{4}}{5} + \frac{\xi^{6}}{7} + ... = \frac{1}{\xi}\ (\xi + \frac{\xi^{3}}{3} + \frac{\xi^{5}}{5} + \frac{\xi^{7}}{7} + ...) =

    \displaystyle = \frac{1}{\xi}\ \frac{\ln (1+\xi)- \ln (1-\xi)}{2} = \frac{1}{2 \xi}\ \ln \frac{1+\xi}{1-\xi} (1)

    Now for n=2...

    \displaystyle \varphi_{2} (\xi)= \frac{1}{2} + \frac{\xi^{2}}{4} + \frac{\xi^{4}}{6} + \frac{\xi^{6}}{8} +...= \frac{1}{\xi^{2}}\ (\frac{\xi^{2}}{2} + \frac{\xi^{4}}{4} + \frac{\xi^{6}}{6} + \frac{\xi^{8}}{8}+ ...)=

    \displaystyle = \frac{1}{\xi^{2}}\ \frac{- \ln (1+\xi) - \ln (1-\xi)}{2} = \frac{1}{2 \xi^{2}} \ \ln \frac{1}{(1+\xi)\ (1-\xi)} (2)

    Now for n=3...

    \displaystyle \varphi_{3} (\xi)= \frac{1}{3} + \frac{\xi^{2}}{5} + \frac{\xi^{4}}{7} + \frac{\xi^{6}}{9} +...= \frac{1}{\xi^{3}}\ (\frac{\xi^{3}}{3} + \frac{\xi^{5}}{5} + \frac{\xi^{7}}{7} + \frac{\xi^{9}}{9}+ ...)=

    \displaystyle = \frac{1}{\xi^{3}}\ \{\frac{\ln (1+\xi) - \ln (1-\xi)}{2} -\xi\} = \frac{1}{2 \xi^{3}}\ \ln \frac{1+\xi}{1-\xi} - \frac{1}{\xi^{2}} (3)

    And now for n=4...

    \displaystyle \varphi_{4} (\xi)= \frac{1}{4} + \frac{\xi^{2}}{6} + \frac{\xi^{4}}{8} + \frac{\xi^{6}}{10} +...= \frac{1}{\xi^{4}}\ (\frac{\xi^{4}}{4} + \frac{\xi^{6}}{6} + \frac{\xi^{8}}{8} + \frac{\xi^{10}}{10}+ ...)=

    \displaystyle = \frac{1}{\xi^{4}}\ \{\frac{- \ln (1+\xi) - \ln (1-\xi)}{2} -\frac{\xi^{2}}{2} \} = \frac{1}{2 \xi^{4}}\ \{\ln \frac{1}{(1+\xi)\ (1-\xi)}- \frac{1}{\xi^{2}}\} (4)

    Observing (1), (2), (3) and (4) it seems that the general explicit expression for \varphi_{n} (x) is...

    \displaystyle \varphi_{n}(x)=\left\{\begin{array}{ll} x^{-\frac{n}{2}}\ \{\frac{1}{2}\ \ln \frac{1}{(1+x^{\frac{1}{2}})\ (1-x^{\frac{1}{2}})} - \sum_{k=1}^{\frac{n}{2}-1} \frac{x^{k}}{2 k} \} ,\,\, n\ even \\{}\\x^{-\frac{n}{2}}\ \{\frac{1}{2}\ \ln \frac{1+ x^{\frac{1}{2}}}{1-x^{\frac{1}{2}}} - \sum_{k=1}^{\frac{n-1}{2}} \frac{x^{k -\frac{1}{2}}}{2 k-1} \} ,\,\, n\ odd\end{array}\right. (5)

    Kind regards

    \chi \sigma

    P.S. : also the expressions like \displaystyle \sum_{k} \frac{x^{k}}{2 k} can be written as functions of x...
    Last edited by chisigma; November 26th 2010 at 09:13 AM. Reason: various mistakes corrected...
    Thanks from Titian
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Grand Panjandrum
    Joined
    Nov 2005
    From
    someplace
    Posts
    14,972
    Thanks
    4
    Quote Originally Posted by chisigma View Post
    Let's suppose that n is a 'natural number' so that we have a family of functions defined as...

    \displaystyle \varphi_{n} (x) = \sum_{k=0}^{\infty} \frac{x^{k}}{n+2 k} (1)

    First we set \xi= \sqrt{x} and then we start with n=1…

    \displaystyle \varphi_{1} (\xi)= 1 + \frac{\xi^{2}}{3} + \frac{\xi^{4}}{5} + \frac{\xi^{6}}{7} + ... = \frac{1}{\xi}\ (\xi + \frac{\xi^{3}}{3} + \frac{\xi^{5}}{5} + \frac{\xi^{7}}{7} + ...) =

    \displaystyle = \frac{1}{\xi}\ \frac{\ln (1+\xi)- \ln (1-\xi)}{2} = \frac{1}{2 \xi}\ \ln \frac{1+\xi}{1-\xi} (1)

    Now for n=2...

    \displaystyle \varphi_{2} (\xi)= \frac{1}{2} + \frac{\xi^{2}}{4} + \frac{\xi^{4}}{6} + \frac{\xi^{6}}{8} +...= \frac{1}{\xi^{2}}\ (\frac{\xi^{2}}{2} + \frac{\xi^{4}}{4} + \frac{\xi^{6}}{6} + \frac{\xi^{8}}{8}+ ...)=

    \displaystyle = \frac{1}{\xi^{2}}\ \frac{- \ln (1+\xi) - \ln (1-\xi)}{2} = \frac{1}{2 \xi^{2}} \ \ln \frac{1}{(1+\xi)\ (1-\xi)} (2)

    Now for n=3...

    \displaystyle \varphi_{3} (\xi)= \frac{1}{3} + \frac{\xi^{2}}{5} + \frac{\xi^{4}}{7} + \frac{\xi^{6}}{9} +...= \frac{1}{\xi^{3}}\ (\frac{\xi^{3}}{3} + \frac{\xi^{5}}{5} + \frac{\xi^{7}}{7} + \frac{\xi^{9}}{9}+ ...)=

    \displaystyle = \frac{1}{\xi^{3}}\ \{\frac{\ln (1+\xi) - \ln (1-\xi)}{2} -\xi\} = \frac{1}{2 \xi^{3}}\ \ln \frac{1+\xi}{1-\xi} - \frac{1}{\xi^{2}} (3)

    And now for n=4...

    \displaystyle \varphi_{4} (\xi)= \frac{1}{4} + \frac{\xi^{2}}{6} + \frac{\xi^{4}}{8} + \frac{\xi^{6}}{10} +...= \frac{1}{\xi^{4}}\ (\frac{\xi^{4}}{4} + \frac{\xi^{6}}{6} + \frac{\xi^{8}}{8} + \frac{\xi^{10}}{10}+ ...)=

    \displaystyle = \frac{1}{\xi^{4}}\ \{\frac{- \ln (1+\xi) - \ln (1-\xi)}{2} -\frac{\xi^{2}}{2} \} = \frac{1}{2 \xi^{4}}\ \{\ln \frac{1}{(1+\xi)\ (1-\xi)}- \frac{1}{\xi^{2}}\} (4)

    Observing (1), (2), (3) and (4) it seems that the general explicit expression for \varphi_{n} (x) is...

    \displaystyle \varphi_{n}(x)=\left\{\begin{array}{ll} x^{-\frac{n}{2}}\ \{\frac{1}{2}\ \ln \frac{1}{(1+x^{\frac{1}{2}})\ (1-x^{\frac{1}{2}})} - \sum_{k=1}^{\frac{n}{2}-1} \frac{x^{k}}{2 k} \} ,\,\, n\ even \\{}\\x^{-\frac{n}{2}}\ \{\frac{1}{2}\ \ln \frac{1+ x^{\frac{1}{2}}}{1-x^{\frac{1}{2}}} - \sum_{k=1}^{\frac{n-1}{2}} \frac{x^{k -\frac{1}{2}}}{2 k-1} \} ,\,\, n\ odd\end{array}\right. (5)

    Kind regards

    \chi \sigma

    P.S. : also the expressions like \displaystyle \sum_{k} \frac{x^{k}}{2 k} can be written as functions of x...
    OK I suppose the use of n indicates that the OP wants this to be an natural.

    CB
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Closed-form solution of a recurrence relation.
    Posted in the Discrete Math Forum
    Replies: 6
    Last Post: July 4th 2011, 03:06 PM
  2. Closed form solution of matrix series?
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: January 19th 2011, 01:41 PM
  3. Closed-form of a power series solution to an ODE
    Posted in the Differential Equations Forum
    Replies: 6
    Last Post: February 22nd 2010, 08:09 AM
  4. closed form solution?
    Posted in the Calculus Forum
    Replies: 1
    Last Post: October 30th 2008, 02:05 AM
  5. power series in closed form.
    Posted in the Algebra Forum
    Replies: 3
    Last Post: October 4th 2008, 02:17 PM

Search Tags


/mathhelpforum @mathhelpforum