My minds gone blank lol
f(t) = pi*t - t^2
thanks
If the function is even then $\displaystyle f(-t) = f(t)$.
$\displaystyle f(t) = \pi t - t^2$
$\displaystyle f(-t) = -\pi t - (-t)^2$
$\displaystyle = -\pi t - t^2$
$\displaystyle \neq f(t)$.
So the function is not even.
If the function is odd then $\displaystyle f(-t) = -f(t)$
$\displaystyle f(-t) = -\pi t - t^2$
$\displaystyle = -(\pi t + t^2)$
$\displaystyle \neq -f(t)$.
So the function is not odd.
This function is neither odd nor even.