show the interal from 0 to 2pi cos(3theta)/(5-4cos(theta))dtheta=pi/12 I need major help?
Follow Math Help Forum on Facebook and Google+
Let $\displaystyle z=e^{it}$. Then can you show: $\displaystyle \int_0^{2\pi}\frac{\cos(3t)}{5-4\cos(t)}dt=\mathop\oint\limits_{|z|=1} \frac{z^6+1}{2z^3}\left( \frac{2z}{10z-4z^2-4}\right)\left(-\frac{i dz}{z}\right)$ Then just use the Residue Theorem.
Originally Posted by durham2 show the interal from 0 to 2pi cos(3theta)/(5-4cos(theta))dtheta=pi/12 I need major help? Also, for example, see this post Contour integration
View Tag Cloud