Originally Posted by

**santouryu** Hi all,

I'm currently doing this java application to find the time of intersection of 2 moving objects in a 2D vector space.

Description: Object A moves in a straight line with a constant velocity with a circular sensor of known radius. This circular sensor is centered at object A and a detection occurs when object B crossed the sensor radius. Object B on the other hand, rotates continuously around a known point.

The time of detection is calculated using the formula below:

X^2 + Y^2 = R^2

where X and Y are the x and y coordinates of the location at which a detection occurs. And R is the radius of the sensor of object A.

All the positional and angular information of the 2 objects are known except for the time of detection.

After working out the long and tedious workings, it was found that terms like tcos (wt) and tsin (wt) emerged in the equation and Laplace transformation was applied to change everything to the S-domain.

Question:

1.) Can Laplace transformation be applied in this case?

2.) How do i find infomation on how to find the roots of a polynomial in S-domain that has a degree of 6?

3.) How to convert the value of s into the correct value in the time-domain?

4.) Is it possible that someone can shed some light about how i should go about tackling this issue?? Like advices, previous posts or some links where i can read up?

Sorry for the abruptness in the description, I hope to hear some advices from the experts in this forum. Thank you in advance.

santouryu