Inequality involving fractions and several variables

What are some simplified conditions for which:

$$W\bigg(A-\frac{X}{W}\bigg)^3\bigg[X-AW-\frac{AY}{N}(B+D)-\frac{AZ}{N}(C+D+E+F+G)\bigg]+\frac{X}{N}\bigg[Y(A+H)(B+D)+AZ(C+D+E+F+G)\bigg]<0$$

**WHERE:**

All of the letters are positive parameters (not constants) and:

$1.$ $$A,B,C,D,E,F,G,H < N \implies \frac{A}{N},\frac{B}{N},\frac{C}{N},\frac{D}{N},\f rac{E}{N},\frac{F}{N},\frac{G}{N},\frac{H}{N} <1 $$

$2.$ $AW>X$

Is this problem tractable by hand, or do I have to use Maple/Matlab to simplify my expression somehow?

Thanks.