You don't really need to know any economics for this question but i just can't understand the wording of the question. So I figured some logical math brains could possibly help me out.

Each hunter has two options: hunting a stag or hunting a hare. There are a total of "n" hunters and, of these, the total number of stag hunters is denoted by "m". If 2 or more hunters go for the stag they catch it and divide it equally and get the highest payoff. If only 1 person goes for the stag they can't catch it and get the lowest payoff. If the hunter decides to catch a hare they get a middle payoff.

Each hunter prefers the fraction 1/k of the stag to a hare, but prefers a hare to any smaller fraction of the stag, where k is an integer with m <= k <= n.

I don't understand what that last sentence means. If someone could illustrate it to me by using an example such as 5 hunters of which are 3 stag hunters that would be great.

Thanks