Vector Triple Product, Alternating Tensor

Consider the field, $\displaystyle \mathbf{u} = \frac{1}{r} \Phi \times \mathbf{r}$ where $\displaystyle \Phi$ is a vector constant. Using suffix notation, show that:

i) $\displaystyle \nabla \cdot \mathbf{u} = 0$

ii) $\displaystyle \nabla \times \mathbf{u} = \frac{1}{r} \Phi + \frac{(\Phi \cdot \mathbf{r})}{r^2} \mathbf{r}$

Using suffix notation, we get $\displaystyle u_i = \frac{1}{r} \epsilon_{ijk} \Phi_j x_k$

And then the dot product gives us $\displaystyle \frac{1}{r} \epsilon_{ijk} \nabla \Phi_j x_k$

Just a little unsure where to go from here?

Thanks in advance