Determine the principal value of $\displaystyle (3+j4)^{1+j2}$ ?
Follow Math Help Forum on Facebook and Google+
Are you asking the find the principal argument of $\displaystyle \displaystyle (3 + j^4)^{1 + j^2}$ with $\displaystyle \displaystyle j= \sqrt{-1}$? If not, what are $\displaystyle \displaystyle j4$ and $\displaystyle \displaystyle j2$?
$\displaystyle \displaystyle (3+j 4)^{1+j 2}= e^{(\ln 5 + j\ \tan^{-1} \frac{4}{3})\ (1+j 2)}= e^{(\ln 5 -2\ \tan^{-1} \frac{4}{3}) + j (2 \ln 5 + \tan^{-1} \frac{4}{3})} $ Kind regards $\displaystyle \chi$ $\displaystyle \sigma$
Is it wrong to note that $\displaystyle \displaystyle 1 + j^2 = 1 - 1 = 0$, so $\displaystyle \displaystyle (3 + j^4)^{1 + j^2} = (3 + j^4)^0 = 1 + 0i$?
Originally Posted by dugongster Determine the principal value of $\displaystyle (3+j4)^{1+j2}$ ? If this problem is really "Determine the principal value of" $\displaystyle (3+4i)^{1+2i}$, then that is truly a make-busy work problem.
View Tag Cloud