Originally Posted by

**shawsend** I have ver. 7.0. Seems I don't even need to specify the assumption. The command:

InverseFourierTransform[Sech[m*(z/2)]^

(1/m), z, t]

gives:

$\displaystyle

\begin{aligned}

&\frac{1}{\sqrt{\pi } \left(1+4 t^2\right)}2^{\frac{1}{2}+\frac{1}{m}}\\

&\left((1+2 i t) _2F_1\left[\frac{1}{m},\frac{1}{2 m}-\frac{i t}{m},1+\frac{1}{2 m}-\frac{i t}{m},-1\right]\\

&+\left.(1-2 i t)_2F_1\left[\frac{1}{m},\frac{1}{2 m}+\frac{i t}{m},1+\frac{1}{2 m}+\frac{i t}{m},-1\right]\right)

\end{aligned}

$