Suppose the tradpezoidal rule $\displaystyle \int$from a to b = ((b-a)/2)(f(a)+f(b))-(((b-a)^3)/12) f"($\displaystyle \eta$) for f$\displaystyle \in$$\displaystyle C^2$, $\displaystyle \eta$$\displaystyle \in$[a,b]. Derive the error estimate for the composite trapezoidal rule with equal spaced: $\displaystyle \int$from a to b f(x)dx= (h/2)[f(a)+f(b)+2$\displaystyle \sum$ for i=1 to N-1 f($\displaystyle x_i$)-((b-a)/12)$\displaystyle h^2$f"($\displaystyle \xi$) where h= (b-a)/N, $\displaystyle x_i$=a+ih, $\displaystyle \xi$$\displaystyle \in$[a,b]. I hope some one can help more or at least lead me in some sort of direction because I thought that the error for comp. trap. rule was ((b-a)/12)$\displaystyle h^2$f"($\displaystyle \xi$) so I'm not sure at all of what to do in this problem. Thank you