express in trig form

$\displaystyle (-2 Ix)/(e^-Ix - e^(Ix) $ $\displaystyle - (8I) (e^(-Ix) + e^(Ix) (I/2) (e^(-Ix) - e^(Ix) $ $\displaystyle - (e^(-Ix) + (e^(Ix)/2 /(e^(-Ix) - e^(I x)^3 $ $\displaystyle = 4/(e^(2 Ix) (e^(-Ix) - e^(Ix)^3 - (4 e^(2 Ix) / (e^(-Ix) $ $\displaystyle - e^(Ix)^3 + (12Ix) / (e^(-Ix) - e^(I x)^3 + (2Ix) / (e^(2Ix) (e^(-Ix) $ $\displaystyle - e^(I x)^3 + (2I) e^(2 Ix) x)/(e^(-Ix) - e^(Ix)^3 $

sorry first time using latex. i dont know how to show the numerator over the denominator and the powers keep ending up looking larger than its supposed to be.

nvm figured it out