Results 1 to 14 of 14

Math Help - Proof that two vectors with the same basis are equal

  1. #1
    Junior Member
    Joined
    Apr 2009
    Posts
    38

    Proof

    Proof that two vectors with the same basis are equal
    Last edited by mr fantastic; May 7th 2009 at 11:00 PM. Reason: Restored question deleted by OP
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member Gamma's Avatar
    Joined
    Dec 2008
    From
    Iowa City, IA
    Posts
    517
    Vectors do not have a basis. A vector space has a basis. A vector is represented in a vector space as a linear combination of basis elements uniquely. So if you are asking if two vectors in a vector space share the same coefficients under the same basis, then yes, they are the same.

    Alternatively, perhaps you were asking if two vector spaces have the same basis, are they the same? This too is true if the vector spaces are over the same field, because they would then span the same set.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Junior Member
    Joined
    Apr 2009
    Posts
    38
    is there a proof that i could use to prove this? it cannot be numbers because i need to prove this for a general case.
    Last edited by mr fantastic; May 7th 2009 at 11:01 PM. Reason: Restored post deleted by OP
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Super Member Gamma's Avatar
    Joined
    Dec 2008
    From
    Iowa City, IA
    Posts
    517
    What is the question? It does not make sense is what my first post is getting at.

    You need to copy down word for word what the problem states if you want help.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    Junior Member
    Joined
    Apr 2009
    Posts
    38
    well words are exactly the one i posted in my first post. Alternatively i can prove that the Col A is the same as the <br />
Row({A^T}) as a vector space. Proof mean that i need to be able to show this but i cannot use a numbered matrix, but i can use an alphabetical matrix or any other method.
    Last edited by mr fantastic; May 7th 2009 at 11:02 PM. Reason: Restored post deleted by OP
    Follow Math Help Forum on Facebook and Google+

  6. #6
    Super Member Gamma's Avatar
    Joined
    Dec 2008
    From
    Iowa City, IA
    Posts
    517
    Your teacher assigned the problem:
    "is there a way that i can prove that if two vectors have the same basis then it means that they are the same?"
    Somehow I do not think so.

    I do not see how the above question relates at all to the Col(A) or the Row (A^T), but all the same.

    Do you know what A^T is? It means take the columns of A and make them the rows, in that same order.
    Col(A) is the span of the columns of A, it is all possible linear combinations of the column vectors of A.
    Row(B) is the set of all possible linear combinations of the rows of B.
    Do you see why these are the same?
    Follow Math Help Forum on Facebook and Google+

  7. #7
    Junior Member
    Joined
    Apr 2009
    Posts
    38
    it did not have the words "is there a way that i can" rest are his words. He is looking for some kind of a mathematical proof, and i am crying.
    Last edited by mr fantastic; May 7th 2009 at 11:03 PM. Reason: Restored post deleted by OP
    Follow Math Help Forum on Facebook and Google+

  8. #8
    Super Member Gamma's Avatar
    Joined
    Dec 2008
    From
    Iowa City, IA
    Posts
    517
    Let A\in M_{m,n}
    Let A=[a_1, a_2, ..., a_n] where a_i \in \mathbb{R}^m These are are the column vectors that make up A.

    Then  Col(A)=span\{a_1, a_2,... a_n\}=\{r_1a_1 + r_2a_2 + ... + r_na_n | r_i \in \mathbb{R} \}

    Now consider A^T. It has rows {a_1, a_2, ..., a_n} in that order. I dunno how to do it in TeX, so this is as good as it is gonna get, write them in order from top to bottom on your paper and put them in square brackets.

    Now consider Row(A^T).
    Row(A^T)=span\{a_1,a_2,...,a_n\}=\{r_1a_1 + r_2a_2 + ... + r_na_n | r_i \in \mathbb{R} \}

    There, they are the same and I didn't use a "number" anywhere.
    Follow Math Help Forum on Facebook and Google+

  9. #9
    Junior Member
    Joined
    Apr 2009
    Posts
    38
    Quote Originally Posted by Gamma View Post
    Let A\in M_{m,n}
    Let A=[a_1, a_2, ..., a_n] where a_i \in \mathbb{R}^m These are are the column vectors that make up A.

    Then  Col(A)=span\{a_1, a_2,... a_n\}=\{r_1a_1 + r_2a_2 + ... + r_na_n | r_i \in \mathbb{R} \}

    Now consider A^T. It has rows {a_1, a_2, ..., a_n} in that order. I dunno how to do it in TeX, so this is as good as it is gonna get, write them in order from top to bottom on your paper and put them in square brackets.

    Now consider Row(A^T).
    Row(A^T)=span\{a_1,a_2,...,a_n\}=\{r_1a_1 + r_2a_2 + ... + r_na_n | r_i \in \mathbb{R} \}

    There, they are the same and I didn't use a "number" anywhere.
    A=[a_1, a_2, ..., a_n] where a_i \in \mathbb{R}^m These are are the column vectors that make up A.
    Then  Col(A)=span\{a_1, a_2,... a_n\}=\{r_1a_1 + r_2a_2 + ... + r_na_n | r_i \in \mathbb{R} \}
     {A^T} = \left[ {\begin{array}{*{20}{c}} {{a_1}} \\<br />
{{a_2}} \\<br />
{{a_3}} \\<br />
{{a_n}} \\<br />
\end{array}} \right]

    Row(A^T)=span\{a_1,a_2,...,a_n\}=\{r_1a_1 + r_2a_2 + ... + r_na_n | r_i \in \mathbb{R} \}<br />

    did i get it right?

    Thanks
    Last edited by mr fantastic; May 7th 2009 at 11:03 PM. Reason: Restored post deleted by OP
    Follow Math Help Forum on Facebook and Google+

  10. #10
    Super Member Gamma's Avatar
    Joined
    Dec 2008
    From
    Iowa City, IA
    Posts
    517
    Yeah you copied down what I wrote correctly for sure, but do you actually understand any of it? That seems to be the bigger problem.

    I think you just need to review the basic definitions to get familiar with them. Understand what a vector space is. Understand what a basis for a vector space is. Understand what a Linear Transformation is. Understand what dimension is. Understand what rank of a matrix or of a map is. Understand what the span of a set is. Understand what linear independece and dependence is. Understand what a matrix represents.

    I stress understand because it is one thing to be able to quote these definitions, but another thing to actually understand and internalize these things. Without a concrete understanding of the jargon of linear algebra, it is very difficult to prove even the simplest question.
    Follow Math Help Forum on Facebook and Google+

  11. #11
    MHF Contributor

    Joined
    Apr 2005
    Posts
    14,974
    Thanks
    1121
    Two vector spaces "are the same", of course, if they contain exactly the same vectors (with, naturally, the same definitions of addition and scalar multiplication).

    a vector space, V, [b]is[/v] the set of all linear combinations of its basis vectors. If the vector space U has the same basis, then the linear combinations of those basis vectors is the same so U= V.

    What's wrong with that proof?
    Follow Math Help Forum on Facebook and Google+

  12. #12
    Junior Member
    Joined
    Apr 2009
    Posts
    38
    So row(A^T)= Rank(A)= Col(A)

    Thanks
    Last edited by mr fantastic; May 7th 2009 at 11:04 PM. Reason: Restored post deleted by OP
    Follow Math Help Forum on Facebook and Google+

  13. #13
    Super Member Gamma's Avatar
    Joined
    Dec 2008
    From
    Iowa City, IA
    Posts
    517
    not true.
    Row(A)= Col(A^T) as above, these are vector spaces.

    but the rank(A) is just an integer.

    It is the dimension of the column span of A. ( it turns out the dimension of the column span is the same as the dimension of the row span). The other things are actual vector spaces they are different things.
    Follow Math Help Forum on Facebook and Google+

  14. #14
    Super Member Gamma's Avatar
    Joined
    Dec 2008
    From
    Iowa City, IA
    Posts
    517
    Perhaps you meant dim(Row(A^T))=rank(A)=dim(Col(A))

    That would be true. And the proof is done by definition of rank of A and what I proved above that Row(A^T)=Col(A)
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 3
    Last Post: June 30th 2011, 08:05 PM
  2. [SOLVED] [proof] Angles Between Two Vectors and Their Projections Are Equal
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: January 26th 2011, 03:23 PM
  3. Basis Vectors
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: April 8th 2010, 01:37 AM
  4. finding a basis from set of vectors
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: March 18th 2010, 01:29 PM
  5. questions about vectors and basis
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: September 7th 2009, 08:10 AM

Search Tags


/mathhelpforum @mathhelpforum