(a)Apply row operations to the table http://ta2.maths.ed.ac.uk:8080/maple...acdhenlllk.gif until it takes the form http://ta2.maths.ed.ac.uk:8080/maple...jkffkaeaii.gif, where http://ta2.maths.ed.ac.uk:8080/maple...eodjkbkill.gif is the http://ta2.maths.ed.ac.uk:8080/maple...eeogffjbgb.gif identity matrix.

(b)Hence, or otherwise, give the inverse of the matrix http://ta2.maths.ed.ac.uk:8080/maple...hcpaoonoam.gif.