Results 1 to 2 of 2

Math Help - [SOLVED] Inverse of Matrices

  1. #1
    Banned
    Joined
    Jan 2009
    Posts
    58

    [SOLVED] Inverse of Matrices

    How can I find the inverse of the following matrices, if possible?

     <br />
A=\begin{pmatrix}2 & 1 & 3\\ 0 & 1 & 2\\1 & 0 & 3\end{pmatrix}<br />

     <br />
B=\begin{pmatrix}1 & -1 & 2 & 3\\4 & 1 & 2 & 0\\2 & -1 & 3 & 1\\4 & 2 & 1 & -5\end{pmatrix}<br />
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Super Member

    Joined
    May 2006
    From
    Lexington, MA (USA)
    Posts
    11,719
    Thanks
    635
    Hello, jennifer1004!

    I must assume you know the Augmented Matrix method.


      A=\begin{pmatrix}2 & 1 & 3\\ 0 & 1 & 2\\1 & 0 & 3\end{pmatrix}
    Immediately evaluate its determinant.
    . . If the determinant is zero, there is no inverse.

    For this matrix, the determinant is 5.
    . . (We can expect the inverse to have denominators of 5.)


    We have: . \left(\begin{array}{ccc|ccc}<br />
2 & 1 & 3 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 1 & 0 \\ 1& 0 & 3 & 0 & 0 & 1\end{array}\right)


    \begin{array}{c}\text{Switch }R_1\\ \text{and }R_3 \\ \end{array}\left(\begin{array}{ccc|ccc}1&0&3&0&0&1 \\ 0&1&2&0&1&0\\ 2&1&3&1&0&0\end{array}\right)


    \begin{array}{c}\\ \\ R_3-2R_1\end{array}\left(\begin{array}{ccc|ccc}1&0&3&0  &0&1 \\ 0&1&2&0&1&0 \\ 0&1&\text{-}3 & 1 & 0 & \text{-}2 \end{array}\right)


    \begin{array}{c}\\ \\ R_3-R_2 \end{array}\left(\begin{array}{ccc|ccc}1&0&3&0&0&1 \\ 0&1&2&0&1&0 \\ 0&0&\text{-}5 & 1&\text{-}1&\text{-}2\end{array}\right)


    . . \begin{array}{ccc}\\ \\ \text{-}\frac{1}{5}R_3 \end{array}\left(\begin{array}{ccc|ccc}1&0&3&0&0&1 \\ 0&1&2&0&1&0 \\ 0&0&1&\text{-}\frac{1}{5} & \frac{1}{5} & \frac{2}{5} \end{array}\right)


    \begin{array}{c}R_1-3R_3 \\ R_2-2R_3 \\ \\ \end{array} \left(\begin{array}{ccc|ccc}1&0&0 & \frac{3}{5}&\text{-}\frac{3}{5} & \text{-}\frac{1}{5} \\ \\[-4mm]0&1&0& \frac{2}{5} & \frac{3}{5} & \text{-}\frac{4}{5} \\ \\[-4mm] 0&0&1& \text{-}\frac{1}{5} & \frac{1}{5} & \frac{2}{5} \end{array}\right)


    Therefore: . A^{-1} \;=\;\begin{pmatrix}\dfrac{3}{5} & \text{-}\dfrac{3}{5} & \text{-}\dfrac{1}{5} \\ \\[-3mm]  \dfrac{2}{5} & \dfrac{3}{5} & \text{-}\dfrac{4}{5} \\ \\[-3mm] \text{-}\dfrac{1}{5} & \dfrac{1}{5} & \dfrac{2}{5} \end{pmatrix}

    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. inverse matrices with ti 89
    Posted in the Calculators Forum
    Replies: 2
    Last Post: May 14th 2011, 05:36 AM
  2. Inverse matrices=]
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: May 19th 2010, 05:38 AM
  3. Inverse Matrices
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: December 30th 2009, 07:41 PM
  4. Inverse Matrices
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: February 26th 2009, 01:30 PM
  5. inverse matrices
    Posted in the Pre-Calculus Forum
    Replies: 2
    Last Post: December 19th 2008, 10:43 AM

Search Tags


/mathhelpforum @mathhelpforum