Originally Posted by

**Brokescholar** 1) Let A be an n x n matrix. Show that det(A) is the product of all the roots of the characteristic polynomial of A.

I get if A is a triangular matrix, how the determinant would equal the roots of the char. polynomial. I don't understand how I would prove that though. And I don't understand how I would figure it out if A is not a triangular matrix.

I know that from det( λIn - A) you can figure out the char. poly. equation and get the roots from that. But how do you tie that in with det(A)? I've been looking through the equations in my book and through the properties of determinants and I can't figure out how to tie these two together.