Results 1 to 2 of 2

Math Help - singular value decomposition

  1. #1
    Newbie
    Joined
    Sep 2008
    Posts
    24

    singular value decomposition

    Can you give me an adea how to compute the singular value decomposition of this

    (1+i 1 0
    1-i 0 1)

    Thank you!
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Opalg's Avatar
    Joined
    Aug 2007
    From
    Leeds, UK
    Posts
    4,041
    Thanks
    7
    Quote Originally Posted by bamby View Post
    Can you give me an idea how to compute the singular value decomposition of this

    T=\begin{bmatrix}1+i&1&0\\ 1-i&0&1\end{bmatrix}
    This is a somewhat long and laborious process. Here's an outline of it.

    You have to start by finding the eigenvalues and eigenvectors of T*T and TT*. Take TT* first, because that is a 22 matrix. So, TT^* =
    \begin{bmatrix}1+i      &1&          0\\1-i        &0&          1\end{bmatrix}\begin{bmatrix}1-i      &1+i\\1&0\\          0&1\end{bmatrix} = \begin{bmatrix}3&2i\\-2i&3\end{bmatrix}. The eigenvalues of this matrix are 1 and 5, with corresponding normalised eigenvectors \begin{bmatrix}1/\sqrt2\\i/\sqrt2\end{bmatrix} and \begin{bmatrix}1/\sqrt2\\-i/\sqrt2\end{bmatrix}.

    Next, T^*T =
    \begin{bmatrix}4&1-i&1+i\\1+i&1&0\\ 1-i&0&1\end{bmatrix}. You don't have to calculate the eigenvectors again, because the theory tell you that these will be the same as those of TT*, together with enough zeros added to make up the right number. Therefore they are 1, 5 and 0. You still have to find corresponding normalised eigenvectors, which are \begin{bmatrix}0\\(1+i)/2\\(-1+i)/2\end{bmatrix}, \begin{bmatrix}2/\sqrt5\\(1+i)/(2\sqrt5)\\ (1-i)/(2\sqrt5)\end{bmatrix}, \begin{bmatrix}1/\sqrt5\\(-1-i)/(\sqrt5)\\ (-1+i)/(\sqrt5)\end{bmatrix}.

    You can now write down the matrices for the singular value decomposition T = U\Sigma V^* of T. These are constructed as follows (apart from a slight modification that will come at the end): U is the matrix whose columns are the normalised eigenvectors of T*T,
    V is the matrix whose columns are the normalised eigenvectors of TT*, and Σ is a matrix having the same shape as T, with zeros everywhere except down the main diagonal, where the entries are the singular values of T, namely the square roots of the eigenvalues. Thus U = \begin{bmatrix}1/\sqrt2&1/\sqrt2\\ i/\sqrt2&-i/\sqrt2\end{bmatrix}, V = \begin{bmatrix}0&2/\sqrt5&1/\sqrt5)\\ (1+i)/2&(1+i)/(2\sqrt5)&(-1-i)/(\sqrt5)\\ (-1+i)/2&(1-i)/(2\sqrt5)&(-1+i)/(\sqrt5)\end{bmatrix}, \Sigma = \begin{bmatrix}1&0&0\\0&\sqrt5&0\end{bmatrix}.

    There's one final catch. You should check your answer by writing down the adjoint V* of V and computing the product U
    ΣV*, which should be equal to T. But when you do that, you find that U\Sigma V^* = \begin{bmatrix}2/\sqrt2&(1-i)/\sqrt2&0\\ -2i/\sqrt2&0&(1-i)/\sqrt2\end{bmatrix}. This looks very different from T. But in fact it's not so different. The process of finding U, Σ and V is only determined up to a scalar factor of modulus 1, which in this case is (1-i)/\sqrt2. If you multiply each entry of UΣV* by \sqrt2/(1-i) then you do indeed get T. So to get the final correct solution, you should multiply each entry of U by \sqrt2/(1-i). With that modified U it is true that T=UΣV*.


    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Negative numbers from a singular value decomposition
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: November 29th 2011, 09:49 AM
  2. Singular value decomposition
    Posted in the Advanced Algebra Forum
    Replies: 5
    Last Post: April 17th 2011, 04:02 AM
  3. Singular Value Decomposition practical applications
    Posted in the Advanced Algebra Forum
    Replies: 0
    Last Post: November 8th 2009, 09:29 AM
  4. singular value decomposition
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: November 23rd 2008, 12:16 AM
  5. Singular Value Decomposition
    Posted in the Advanced Algebra Forum
    Replies: 0
    Last Post: January 16th 2008, 05:44 PM

Search Tags


/mathhelpforum @mathhelpforum