Results 1 to 2 of 2

Math Help - p-groups

  1. #1
    Member
    Joined
    Sep 2008
    Posts
    166

    p-groups

    Let G be a finite group and p be a prime. Prove that G is a p-group if and only if the order of each element of G is a power of p.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Global Moderator

    Joined
    Nov 2005
    From
    New York City
    Posts
    10,616
    Thanks
    10
    Quote Originally Posted by dori1123 View Post
    Let G be a finite group and p be a prime. Prove that G is a p-group if and only if the order of each element of G is a power of p.
    I assume by "p-group" you mean |G| is a power of a prime.

    If G is a p-group and x an element in G. The order of x needs to divide |G| but since |G| is a power of a prime it means |x| is a power of a prime. Now conversely, say G has all elements power of a prime. Suppose that |G| is not a power of p, then there is an a prime q not equal to p so that q divides |G|. But then by Cauchy's theorem there is an x so that |x|=q, but that is a contradiction, therefore, |G| must be a power of p.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. About minimal normal groups and subnormal groups
    Posted in the Advanced Algebra Forum
    Replies: 9
    Last Post: October 20th 2011, 02:53 PM
  2. Automorphism groups of cyclic groups
    Posted in the Advanced Algebra Forum
    Replies: 5
    Last Post: August 15th 2011, 10:46 AM
  3. Quotient Groups - Infinite Groups, finite orders
    Posted in the Advanced Algebra Forum
    Replies: 3
    Last Post: August 11th 2010, 08:07 AM
  4. free groups, finitely generated groups
    Posted in the Advanced Algebra Forum
    Replies: 5
    Last Post: May 23rd 2009, 04:31 AM
  5. Order of groups involving conjugates and abelian groups
    Posted in the Advanced Algebra Forum
    Replies: 5
    Last Post: February 5th 2009, 09:55 PM

Search Tags


/mathhelpforum @mathhelpforum