For this sets determine in each case if G is a Gröbner base of <G>:

$\displaystyle G=\{ x^4y^2-z^5, x^3y^3-1,x^2y^4-2z\}$

$\displaystyle G=\{ x-z^2, y-z^3\}$

thanks!

Printable View

- Nov 7th 2008, 06:26 PMroporteGrlex and Gröbner
For this sets determine in each case if G is a Gröbner base of <G>:

$\displaystyle G=\{ x^4y^2-z^5, x^3y^3-1,x^2y^4-2z\}$

$\displaystyle G=\{ x-z^2, y-z^3\}$

thanks!