Let $\displaystyle A$ be a ring in wich $\displaystyle 0$ is the only nilpotent element ( $\displaystyle x^n=0 \rightarrow x=0 $ ) . Prove that $\displaystyle x$ is invertible if and only if x is left invertible .

Printable View

- Oct 25th 2008, 03:59 AMpetterRing with 0 only nilpotent element
Let $\displaystyle A$ be a ring in wich $\displaystyle 0$ is the only nilpotent element ( $\displaystyle x^n=0 \rightarrow x=0 $ ) . Prove that $\displaystyle x$ is invertible if and only if x is left invertible .

- Oct 25th 2008, 08:39 AMOpalg
- Oct 27th 2008, 09:19 AMpetter
- Oct 27th 2008, 09:43 AMOpalg
- Oct 27th 2008, 12:12 PMpetter