Let A be m x n, (m<n) and of full rank (ie rank(A) = m). Then, the linear system Ax = b has infinite many solutions. Acutally, the general solution depends on n - m arbitrary parameters. How do you find the unique soultion iwth the minumum 2-norm?
Let A be m x n, (m<n) and of full rank (ie rank(A) = m). Then, the linear system Ax = b has infinite many solutions. Acutally, the general solution depends on n - m arbitrary parameters. How do you find the unique soultion iwth the minumum 2-norm?