Let A be an m x n matrix and B be an n x p matrix. For each j let uj and vj denote the jth columns of AB and B, respectively. Prove vj = Bej, where ej is the jth standard vector of F^p (j is a subscript) Thanks..
Follow Math Help Forum on Facebook and Google+
In general if $\displaystyle C=(c_1 c_2 \cdots c_n) $ where c_i are vector columns then $\displaystyle C\begin{pmatrix} k_1\\k_2\\\vdots\\k_n\end{pmatrix}=k_1c_1+\cdots k_nc_n$ Try to use this fact!
View Tag Cloud