Results 1 to 4 of 4

Math Help - Systems of Linear Equations

  1. #1
    Yan
    Yan is offline
    Member
    Joined
    May 2008
    Posts
    103

    Systems of Linear Equations

    Solve the given system of equations using either Gaussian or Gauss-Jordan elimination.

    a)2w+3x-y+4z=0
    3w-x+z=1
    3w-4x+y-z=2


    b) -w+3x-2y+4z=0
    2w-6x+y-2z=-3
    w-3x+4y-8z=2
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Junior Member
    Joined
    Oct 2008
    Posts
    64
    In my opinion people won't response your question. The main reason is that it is messy to right matrix in latex. The second one elimination problem is kind of routine so no body has no interest to answer.

    Show us how much you have done with this problem and we (should I say I) will be happy to assist you.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Rhymes with Orange Chris L T521's Avatar
    Joined
    May 2008
    From
    Chicago, IL
    Posts
    2,844
    Thanks
    3
    Quote Originally Posted by Yan View Post
    Solve the given system of equations using either Gaussian or Gauss-Jordan elimination.

    a)2w+3x-y+4z=0
    3w-x+z=1
    3w-4x+y-z=2
    I will only do one, since these will take a while...

    \begin{bmatrix}2&3&-1&4&0\\3&-1&0&1&1\\3&-4&1&-1&2\end{bmatrix}

    --------------------------------

    \tfrac{1}{2}R_1\rightarrow R_1

    \begin{bmatrix}1&\frac{3}{2}&-\frac{1}{2}&2&0\\3&-1&0&1&1\\3&-4&1&-1&2\end{bmatrix}

    --------------------------------

    -3R_1+R_2\rightarrow R_2
    -3R_1+R_3\rightarrow R_3

    \begin{bmatrix}1&\frac{3}{2}&-\frac{1}{2}&2&0\\0&-\frac{11}{2}&\frac{3}{2}&-5&1\\0&-\frac{17}{2}&\frac{5}{2}&-7&2\end{bmatrix}

    --------------------------------

    -\tfrac{2}{11}R_2\rightarrow R_2

    \begin{bmatrix}1&\frac{3}{2}&-\frac{1}{2}&2&0\\0&1&-\frac{3}{11}&\frac{10}{11}&-\frac{2}{11}\\0&-\frac{17}{2}&\frac{5}{2}&-7&2\end{bmatrix}

    --------------------------------

    \tfrac{17}{2}R_2+R_3\rightarrow R_3

    \begin{bmatrix}1&\frac{3}{2}&-\frac{1}{2}&2&0\\0&1&-\frac{3}{11}&\frac{10}{11}&-\frac{2}{11}\\0&0&\frac{2}{11}&\frac{8}{11}&\frac{  5}{11}\end{bmatrix}

    --------------------------------

    \tfrac{11}{2}R_3\rightarrow R_3

    \begin{bmatrix}1&\frac{3}{2}&-\frac{1}{2}&2&0\\0&1&-\frac{3}{11}&\frac{10}{11}&-\frac{2}{11}\\0&0&1&4&\frac{5}{2}\end{bmatrix}

    --------------------------------

    We have 3 equations with 4 unknowns. Let us introduce a parameter, say z=t

    Using Gaussian Elimination, we can now back substitute:

    \color{red}\boxed{z=t}

    y+4z=\tfrac{5}{2}\implies \color{red}\boxed{y=\tfrac{5}{2}-4t}

    x-\tfrac{3}{11}y+\tfrac{10}{11}z=-\tfrac{2}{11}\implies x=\tfrac{3}{11}\left[\tfrac{5}{2}-4t\right]-\tfrac{10}{11}t-\tfrac{2}{11}\implies \color{red}\boxed{x=\tfrac{1}{2}-2t}

    w+\tfrac{3}{2}x-\tfrac{1}{2}y+2z=0\implies w=-\tfrac{3}{2}\left[\tfrac{1}{2}-2t\right]+\tfrac{1}{2}\left[\tfrac{5}{2}-4t\right]-2t\implies \color{red}\boxed{w=\tfrac{1}{2}-t}

    Therefore, the solution set is \left(w,x,y,z\right)=\color{red}\boxed{\left(\tfra  c{1}{2}-t,~\tfrac{1}{2}-2t,~\tfrac{5}{2}-4t,~t\right)}



    Does this make sense?

    --Chris
    Follow Math Help Forum on Facebook and Google+

  4. #4
    Rhymes with Orange Chris L T521's Avatar
    Joined
    May 2008
    From
    Chicago, IL
    Posts
    2,844
    Thanks
    3
    Quote Originally Posted by watchmath View Post
    In my opinion people won't response your question. The main reason is that it is messy to right matrix in latex.
    That is a possibility...but there is a neat way of creating matrices without using

    Code:
    \left[\begin{array}{cccc} [insert matrix here] \end{array}\right]
    You can use

    Code:
    \begin{bmatrix} [insert matrix entries here] \end{bmatrix}
    This saves me a lot of time.

    For example, instead of using

    Code:
    \left[\begin{array}{cccc} 1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1 \end{array}\right]
    to generate \left[\begin{array}{cccc} 1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1 \end{array}\right], you can use

    Code:
    \begin{bmatrix}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1 \end{bmatrix
    to generate \begin{bmatrix} 1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1 \end{bmatrix}

    The second one elimination problem is kind of routine so no body has no interest to answer.
    It may be this, or just that using eliminations on this will lead to ugly looking fraction elements!!! [as seen in my response to part a)]

    --Chris
    Last edited by Chris L T521; October 10th 2008 at 07:12 PM. Reason: included example of code...
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 6
    Last Post: November 30th 2011, 01:41 AM
  2. systems of linear equations
    Posted in the Advanced Algebra Forum
    Replies: 2
    Last Post: January 1st 2011, 10:30 AM
  3. Systems of linear equations
    Posted in the Algebra Forum
    Replies: 2
    Last Post: December 11th 2009, 04:11 PM
  4. Systems of Linear Equations
    Posted in the Algebra Forum
    Replies: 1
    Last Post: September 22nd 2009, 11:29 AM
  5. Replies: 7
    Last Post: August 30th 2009, 10:03 AM

Search Tags


/mathhelpforum @mathhelpforum