Find basis for R3 relative to which the matrix for T is diagonal:
T[x1, x 2, x3] = [-2x1 + x2 - x3, x1 - 2x2 - x3, -x1 - x2 - 2x3]
Hello
Find the matrix T of the transformation.
$\displaystyle T=\begin{pmatrix} -2&1&-1 \\ 1&-2&-1 \\ -1&-1&-2 \end{pmatrix}$
Step 1 :
find the eigenvalues
Step 2 :
find the eigenvectors associated to each eigenvalue
Step 3 :
it's done :P
---------------------------
How to find eigenvalues :
Find the characteristic polynomial, defined as :
$\displaystyle \chi_T(\lambda)=det(T-\lambda I_3)$
The eigenvalues will be the roots of the characteristic polynomial.
----------------------------
Comment :
Hmmm I have to check it out