Vandermonde matrix - Wikipedia, the free encyclopedia
How would one prove that
The determinant of a square Vandermonde matrix (so m=n) can be expressed as:
$\displaystyle
det(V) = \prod_{1 \le i < j \le n} (a_j - a_i)
$?
Vandermonde matrix - Wikipedia, the free encyclopedia
How would one prove that
The determinant of a square Vandermonde matrix (so m=n) can be expressed as:
$\displaystyle
det(V) = \prod_{1 \le i < j \le n} (a_j - a_i)
$?