## recognizing a product of two 3d rotations (matrices)

Hi, I have a problem identifying some 3d rotation matrices. Actually I don't know if the result can be brought on the desired form, however it would make sense from a physics point of view. My two questions are given at the bottom.

$\mathbf{s}=\left(
\begin{array}{c}
s_{x} \\ s_{y} \\ s_{z}
\end{array} \right),\; \mathbf{S}=\left(
\begin{array}{c}
S_{x} \\ S_{y} \\ S_{z}
\end{array} \right)$

$H=\left[\left(
\begin{array}{ccc}
1-\left(1-C_{z}^{2}+C_{x}^{2}\right)\gamma^{2}& 0 & -2\gamma\left(1-C_{x}C_{z}\gamma\right) \\
0 & 1-\left(1+C_{z}^{2}+C_{x}^{2}\right)\gamma^{2} & 0 \\
2\gamma\left(1-C_{x}C_{z}\gamma\right)& 0 &
1-\left(1+C_{z}^{2}-C_{x}^{2}\right)\gamma^{2}
\end{array} \right) \mathbf{s}\right]\cdot\mathbf{S}
$

(for the physics interested: this describes Kondo effect in a quantum dot with spin-orbit interaction)

The goal is to bring H on a the form $H = \left(\mathbf{A}\mathbf{s}\right)\cdot\left(\mathb f{B}\mathbf{S}\right)$ where A and B are matrices describing rotations.

For Cx=Cz=0 :

$H=\left[\left(1-\gamma^{2}\right)\underbrace{\left(
\begin{array}{ccc}
1 & 0 & \theta \\
0 & 1 & 0 \\
-\theta & 0 & 1
\end{array} \right)}_{R_{y}(\theta)+O(\theta^{2})}
\mathbf{s}\right]\cdot\mathbf{S} \;\; \approx \;\; \left(1-\gamma^{2}\right)\left(R_{y}(\theta) \mathbf{s}
2) Is it possible to write it as $H = \left(\mathbf{A}\mathbf{s}\right)\cdot\left(\mathb f{B}\mathbf{S}\right)$ where A and B are matrices describing rotations?