Results 1 to 12 of 12

Math Help - topology question

  1. #1
    Member
    Joined
    Apr 2008
    From
    Seoul, South Korea
    Posts
    128

    topology question

    S is the set of all bounded, infinite sequences (x_k)=(x_1,x_2,...) of real numbers where (x_k) is bounded if its supremum is less than infinite for every pair of such sequences x=(x_k) and y=(y_k) where d(x,y)=sup_k abs (x_k-y_k). the question says denote by B(0,x)- the closed unit ball in (S,d) centered at 0 B(o,x)-={x: d(0,x)<=1}.

    1. observe by construction B(0,x)- is closed and bounded.
    2. for each n in the naturals, define x^(n)=(x_n,k) by x_n,k=1 if x=n and 0 otherwise. prove that sequence x^1,x^2,x^3,... of elements in (S,d) lies in B(0,x)- and has no convergent subsequences. conclude that B(0,x)- is not sequentially compact hence by bolzano-weierstrauss thm cannot be compact.

    thanks for any help.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    MHF Contributor
    Opalg's Avatar
    Joined
    Aug 2007
    From
    Leeds, UK
    Posts
    4,041
    Thanks
    7
    Show that d(x^{(m)},x^{(n)})=1 whenever m≠n. It should then be obvious that (x^{(n)}) cannot have any convergent subsequence.
    Follow Math Help Forum on Facebook and Google+

  3. #3
    Member
    Joined
    Apr 2008
    From
    Seoul, South Korea
    Posts
    128
    i dont get what they mean when they say "by construction," and also, i'm not seeing how there's no convergent subsequence.. why does distance between and m and n not equaling 1 contribute to the nonexistence of convergent subsequence? yes i know... i'm lost
    Follow Math Help Forum on Facebook and Google+

  4. #4
    MHF Contributor
    Opalg's Avatar
    Joined
    Aug 2007
    From
    Leeds, UK
    Posts
    4,041
    Thanks
    7
    Quote Originally Posted by squarerootof2 View Post
    i dont get what they mean when they say "by construction,"
    I'm also uncertain what they mean by "by construction", which is why I didn't comment on that part of the question. For a start, I don't know why the notation B(0,x)- is used. Shouldn't it be B(0,1), the ball centred at 0 with radius 1? It's certainly obvious that this set is bounded (because everything in it is within distance 1 of the point 0). It's not immediately obvious that it's closed. That's presumably something you're meant to prove.

    Quote Originally Posted by squarerootof2 View Post
    and also, i'm not seeing how there's no convergent subsequence.. why does distance between and m and n not equaling 1 contribute to the nonexistence of convergent subsequence? yes i know... i'm lost
    Have you come across the concept of a Cauchy sequence? If a sequence converges then it has to be Cauchy, which means that the distance between any two terms tends to 0 if you go far enough along the sequence. But in this sequence the distance bwteen any two terms is 1. So it's impossible for any subsequence to be Cauchy. Therefore no subsequence converges.
    Follow Math Help Forum on Facebook and Google+

  5. #5
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,605
    Thanks
    1573
    Awards
    1
    It was given in the statement that B(o,x)-={x: d(0,x)<=1} or \overline {B(0;1)} .
    However, I did try to comment because frankly I did not understand the notation “define x^(n)=(x_n,k) by x_n,k=1 if x=n and 0 otherwise.”
    Did simple sequences become sequences of pairs?
    It just seems to me to be a confused question.
    Follow Math Help Forum on Facebook and Google+

  6. #6
    MHF Contributor
    Opalg's Avatar
    Joined
    Aug 2007
    From
    Leeds, UK
    Posts
    4,041
    Thanks
    7
    Quote Originally Posted by Plato View Post
    frankly I did not understand the notation “define x^(n)=(x_n,k) by x_n,k=1 if x=n and 0 otherwise.” Presumably "x=n" should read "k=n".
    I believe that x^(n) is supposed to be the element of S (the space of all bounded, infinite sequences) which has a 1 in the n-th coordinate and zeros everywhere else. So x_n,k means the k-th coordinate of the sequence x^(n).
    Follow Math Help Forum on Facebook and Google+

  7. #7
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,605
    Thanks
    1573
    Awards
    1
    Yes, that is exactly my guess also. It is such a well-worn example.
    But I was afraid of adding to the questioner’s confusion.
    Follow Math Help Forum on Facebook and Google+

  8. #8
    Member
    Joined
    Apr 2008
    From
    Seoul, South Korea
    Posts
    128
    i can see that B(0,x)- is obviously closed and bounded since the closure is closed, and this sequence is bounded by 1. but i just dont see what i need to "construct"

    as for the second part, thanks for the help =)
    Follow Math Help Forum on Facebook and Google+

  9. #9
    MHF Contributor
    Opalg's Avatar
    Joined
    Aug 2007
    From
    Leeds, UK
    Posts
    4,041
    Thanks
    7
    Quote Originally Posted by squarerootof2 View Post
    i can see that B(0,x)- is obviously closed and bounded since the closure is closed, and this sequence is bounded by 1. but i just dont see what i need to "construct"
    That phrase "by construction" is baffling. I don't know what to make of it. But there is still something to prove. The set {x: d(0,x)*#8804;1} is certainly bounded, and its closure is certainly closed. But when you take the closure, is it still bounded? The answer is Yes, and in fact the set is already closed, so you don't actually need to take the closure. But that fact does need some explanation.
    Follow Math Help Forum on Facebook and Google+

  10. #10
    MHF Contributor

    Joined
    Aug 2006
    Posts
    18,605
    Thanks
    1573
    Awards
    1
    Quote Originally Posted by squarerootof2 View Post
    but i just dont see what i need to "construct"
    as for the second part
    The “construct” is really construction and it goes with part (a) and has nothing to do with part b).
    For part b) look at this description of the sequence: “That x^(n) is supposed to be the element of S (the space of all bounded, infinite sequences) which has a 1 in the n-th coordinate and zeros everywhere else.” Now is should be clear to you that any two terms of that sequence are exactly 1 unit apart. Therefore, the sequence can have no limit point. Because if a sequence has a limit then almost all the terms of the sequence are ‘close’ to the limit. But these are all 1 unit apart, none is close another.
    Follow Math Help Forum on Facebook and Google+

  11. #11
    Member
    Joined
    Apr 2008
    From
    Seoul, South Korea
    Posts
    128
    ok so the terms of the sequences go like

    x^(1)=1,0,0,0,...
    x^(2)=0,1,0,0,...
    x^(3)=0,0,1,0,...

    and so on. it would seem to me that there would be a convergent subsequence if we took out the 1 from each term... i think i'm missing something to this problem...
    Follow Math Help Forum on Facebook and Google+

  12. #12
    Member
    Joined
    Apr 2008
    From
    Seoul, South Korea
    Posts
    128
    never mind, seems to make more sense now... thank you so much for the help guys =)
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Topology question
    Posted in the Differential Geometry Forum
    Replies: 6
    Last Post: March 1st 2010, 02:31 PM
  2. Topology question
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: February 6th 2009, 09:00 PM
  3. Topology Question
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: May 16th 2008, 03:33 AM
  4. one more topology question
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: April 19th 2008, 05:42 AM
  5. topology question
    Posted in the Advanced Algebra Forum
    Replies: 1
    Last Post: April 19th 2008, 04:06 AM

Search Tags


/mathhelpforum @mathhelpforum