Results 1 to 3 of 3

Math Help - stuck on diagonalizabilty problem

  1. #1
    Senior Member
    Joined
    Jan 2008
    From
    Montreal
    Posts
    311
    Awards
    1

    stuck on diagonalizabilty problem

    is the matrix diagonalizable, if so find an inverted matrix Q and matrix D such that Q^{-1}AQ = D

    A= \left(\begin{array}{cc} 1 & 3 \\ \\3 & 1 \end{array}\right)

    so far I have:

    \left(\begin{array}{cc} 1 & 3 \\ \\3 & 1 \end{array}\right) - x <br />
\left(\begin{array}{cc} 1 & 0 \\ \\0 & 1 \end{array}\right) = \left(\begin{array}{cc} 1-x & 3 \\ \\3 & 1-x \end{array}\right)

    det \left(\begin{array}{cc} 1-x & 3 \\ \\3 & 1-x \end{array}\right) = (1-x)^2-(3)(3) = 1-2x+x^2 -9 = x^2-2x- 8 = (x+2)(x-4)

    the eigenvalues are \lambda_1 = -2 , \ \ \lambda_2 = 4 with algebraic multiplicity 1 for both.

    \left(\begin{array}{cc} 1 & 3 \\ \\3 & 1 \end{array}\right) -(-2) \left(\begin{array}{cc} 1 & 0 \\ \\0 & 1 \end{array}\right) = \left(\begin{array}{cc} 3 & 3 \\ \\3 & 3 \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ \\0 & 0 \end{array}\right)

    at which point I get stuck.
    Last edited by lllll; March 30th 2008 at 06:26 PM.
    Follow Math Help Forum on Facebook and Google+

  2. #2
    Senior Member
    Joined
    Jan 2008
    From
    Montreal
    Posts
    311
    Awards
    1
    \left(\begin{array}{cc} 1 & 3 \\ \\3 & 1 \end{array}\right) -(-2) \left(\begin{array}{cc} 1 & 0 \\ \\0 & 1 \end{array}\right) = \left(\begin{array}{cc} 3 & 3 \\ \\3 & 3 \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ \\0 & 0 \end{array}\right)

    \left(\begin{array}{cc} 1 \\ \\ -1 \end{array}\right) = \gamma_1

    \left(\begin{array}{cc} 1 & 3 \\ \\3 & 1 \end{array}\right) -(4) \left(\begin{array}{cc} 1 & 0 \\ \\0 & 1 \end{array}\right) = \left(\begin{array}{cc} -3 & 3 \\ \\3 & -3 \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ \\0 & 0 \end{array}\right)

    \left(\begin{array}{cc} 1 \\ \\ 1 \end{array}\right) = \gamma_2

    Q= \gamma_1 \bigcup \gamma_2 = \left(\begin{array}{cc} 1 \\ \\ -1 \end{array}\right) \bigcup \left(\begin{array}{cc} 1 \\ \\ 1 \end{array}\right) = \left(\begin{array}{cc} 1 & 1 \\ \\ -1 & 1 \end{array}\right)

    Q^{-1} = \left(\begin{array}{cc|cc} 1 & 1 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{array}\right) = \left(\begin{array}{cc|cc} 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} \end{array}\right)

    D = \left(\begin{array}{cc} -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} \end{array}\right) \left(\begin{array}{cc} 1 & 3 \\ \\3 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ \\ -1 & 1 \end{array}\right)

    is this right?
    Follow Math Help Forum on Facebook and Google+

  3. #3
    MHF Contributor
    Opalg's Avatar
    Joined
    Aug 2007
    From
    Leeds, UK
    Posts
    4,041
    Thanks
    7
    Quote Originally Posted by lllll View Post
    Q^{-1} = \left(\begin{array}{cc|cc} 1 & 1 & 1 & 0 \\ -1 & 1 & 0 & 1 \end{array}\right) = \left(\begin{array}{cc|cc} 1 & 0 & -\frac{1}{2} & 0 \\ 0 & 1 & \frac{1}{2} & \frac{1}{2} \end{array}\right)

    D = \left(\begin{array}{cc} -\frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{2} \end{array}\right) \left(\begin{array}{cc} 1 & 3 \\ \\3 & 1 \end{array}\right) \left(\begin{array}{cc} 1 & 1 \\ \\ -1 & 1 \end{array}\right)

    is this right?
    Q^{-1} is wrong. It should be \begin{pmatrix}\frac12&-\frac12\\\frac12&\frac12\end{pmatrix}.

    You can check whether your answer is right by multiplying out the matrix product for D, which ought to be a diagonal matrix with the eigenvalues as its diagonal entries.
    Follow Math Help Forum on Facebook and Google+

Similar Math Help Forum Discussions

  1. Replies: 1
    Last Post: December 10th 2009, 12:22 PM
  2. stuck on this problem
    Posted in the Trigonometry Forum
    Replies: 2
    Last Post: March 23rd 2009, 02:51 PM
  3. Stuck on problem
    Posted in the Pre-Calculus Forum
    Replies: 5
    Last Post: March 14th 2009, 03:09 PM
  4. Stuck on this problem
    Posted in the Calculus Forum
    Replies: 4
    Last Post: November 25th 2008, 07:13 PM
  5. stuck on this problem
    Posted in the Pre-Calculus Forum
    Replies: 1
    Last Post: September 1st 2008, 10:04 AM

Search Tags


/mathhelpforum @mathhelpforum