# Thread: Determinant of non square matrix

1. ## Determinant of non square matrix

Heres the question:

I understand that the answer is |X'| multiplied by |X|. But how do you find the determinant of a non square matrix. I've heard a rumour that they cannot be defined or equal to zero.

2. $\left(\begin{array}{ccc}1 & 0 & 6 \\1 & 1 & 0\end{array}\right) \times \left(\begin{array}{cc}1 & 1 \\0 & 1 \\6 & 0\end{array}\right)= \left(\begin{array}{cc}37 & 1 \\1 & 2 \end{array}\right)$

$\left | \begin{array}{cc}37 & 1 \\1 & 2 \end{array} \right | = 72$

3. Cheers for the help but I already knew what the multiple of X and X' was. What I want to know is the determinant of the two? Or do you simply find the determinant of the 3x3 matrix that results from multiplying them together? I was led to beleive that:
|X'X| = |X'| x |X|
and given that both X and X' are non square matrices how do you find their determianants?

4. Originally Posted by Brassy
Cheers for the help but I already knew what the multiple of X and X' was. What I want to know is the determinant of the two? Or do you simply find the determinant of the 3x3 matrix that results from multiplying them together? I was led to beleive that:
|X'X| = |X'| x |X|
and given that both X and X' are non square matrices how do you find their determianants?
the result your trying to use is true for square matrices, I haven't studied matrices in great detail but form what I know it is not possible to find the determinate of a non-square matrix. I believe the question is suppose to be approached by the method I used in my pervious post.

,

,

,

,

,

,

,

,

,

,

,

,

,

,

# non-square matrix determinant

Click on a term to search for related topics.