Let I be an open interval such that 4 ∈ I and let a function f be defined on

a set D = I\{4}. Evaluate $ \lim_{x \to 4} f(x)$ , where x + 2 ≤ f(x) ≤ x^2 − 10 for all

x ∈ D.

2)How to use the squeeze theorem to show that $ \lim_{x\to0^+\left(\sqrt{x}e^{sin\frac1x}\right)}= 0$